M1. (a) (i) $\underline{0.0212}$
Need 3 sig figsAllow correct answer to 3 sig figs eg 2.12×10^{-2}
(ii) 0.0106
Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs
(iii) $\quad M_{t}=\underline{100.1}$
1.06 g

Allow 100.1 as 'string'
Need 3 sig figs or more
Consequential on (a)(ii) x 100(.1)
(iv) Neutralisation or acid / base reaction

Allow acid / alkali reaction
Apply list principle
(b) (i) $\mathrm{T}=304(\mathrm{~K})$ and $\mathrm{P}=100000(\mathrm{~Pa})$

Only T and P correctly converted
$\frac{100000 \times 3.50 \times 10^{-3}}{8.31 \times 304} \mathrm{ORn}=\frac{\mathrm{PV}}{\mathrm{RT}}$
0.139 (mol)

Allow $0.138-0.139$
(ii) $0.0276-0.0278(\mathrm{~mol})$

Allow answer to (b)(i) divided by 5 leading to a correct answer
Allow 0.028

(c) $4.20 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{4.20}{164(.1)} \quad \frac{1.84}{18}$
Mark is for dividing by the correct Mr values M2 and M3 dependent on correct M1
$0.0256 \quad 0.102$ M2 can be awarded here instead

1 : 3.98
$x=4$
If $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ seen with working then award 3 marks Credit alternative method which gives $x=4$

M2.(a) (i) Volume of crater-lake solution on x-axis
Do not penalise missing axes labels.
If axes unlabelled use data to decide.
Lose this mark if axes mis-labelled.

All points plotted correctly + /- one square
(ii) Draws appropriate line of best fit, omitting point at $20 \mathrm{~cm}^{3} / 15 \mathrm{~cm}^{3}$

Lose this mark if the line deviated towards the anomalous result.
Lose this mark if the candidate's line is doubled or kinked.
Candidate does not have to extrapolate to the origin.
(iii) $16.5 \mathrm{~cm}^{3}+/-0.5 \mathrm{~cm}^{3}$

Accept this answer only.
Do not mark consequentially on candidate's graph.
(iv) Value corresponding to $10 \mathrm{~cm}^{3}$ crater-lake solution $/ 6.00 \mathrm{~cm}^{3}$ Must have correct identity for explanation mark. Accept results aren't concordant.

Greatest \% error from use of burette

Accept difficult to be accurate with small volumes (owtte).
(b) (i) $\mathrm{pV}=\mathrm{nRT}$

Accept any correct rearrangement.
Ignore case.
(ii) $\mathrm{V}=81.0 \times 10^{-6}$ or 8.1×10^{-5}
$\mathrm{n}=\left(1 \times 10^{5} \times 81.0 \times 10^{-6}\right) /(8.31 \times 298)$
Mark consequentially on candidate's volume.
$\mathrm{n}=3.27 \times 10^{-3}(\mathrm{~mol})$
Correct answer without working scores one mark only.
Allow consequential mark using incorrect conversion. Incorrect units lose this mark.
(iii) $M_{\mathrm{r}} \mathrm{CaCO}_{3}=100.1$ (M1)

Accept 100 (can score this mark in calculation for M2 and M3).

Moles $\mathrm{CaCO}_{3}=\left(3.27 \times 10^{-3} \times 10\right)=3.27 \times 10^{-2}(\mathrm{M} 2)$
Do not penalise lack of units.
Allow b(ii) $\times 10$
Allow $1.25 \times 10^{-3} \times 10$

Mass $\mathrm{CaCO}_{3}=\mathrm{M} 1 \times \mathrm{M} 2(=3.27 \mathrm{~g})$
Correct mass without working scores one mark only.
Allow $1.25 \times 10^{-2} \times 10 \times 100.1=12.5 \mathrm{~g}$
(iv) $(3.27 / 95) \times 100$

Accept (b(iii) / 95) $\times 100$.
Do not penalise precision.
3.44 g

Do not penalise lack of units.
Using 12.5 g gives 13.2 g
Correct answer without working scores 2 marks.
(v) Abundant / readily available

Accept not caustic or alkaline.
Non-corrosive
Accept insoluble so safe to add in excess (owtte).

M3. (a) (i) $\quad \underline{4.98 \times 10^{-3}}$
Only
(ii) 2.49×10^{-3}

Allow answer to (a)(i) $\div 2$
Allow answers to 2 or more significant figures
1
(iv) 138.2
3.44 divided by the candidate.s answer to (a)(iii)
138.2 or 138.1 (i.e. to 1 d.p.)
(v) $(138-60) \div 2=39.1$

Allow 39-39.1
Allow ((a)(iv) -60$) \div 2$

K/potassium
Allow consequential on candidate's answer to (a)(iv) and (a)(v) if a group 1 metal

Ignore + sign
(b) $\quad \mathrm{PV}=\mathrm{nRT}$ or rearranged

If incorrectly rearranged $C E=0$
$T=\frac{0.022 \times 100000}{0.658 \times 8.31}$
Correct M2 also scores M1

402(.3) K (or $129^{\circ} \mathrm{C}$)
allow 402-403K
or $129-130{ }^{\circ} \mathrm{C}$
do not penalise ${ }^{\circ} \mathrm{K}$
M3 must include units for mark
(c) Pressure build up from gas/may explode/stopper fly out/glass shatters/breaks

Penalise incorrect gas
(d) (i) $\quad M_{r}=84.3$

If 84 used, max 1
$\underline{6.27}=0.074(4)$

84.3

CE if not 84 or 84.3
Allow answers to 2 or more significant figures
M2 $=0.074-0.075$

M2 Expected mass $\mathrm{MgSO}_{4}=0.074(4) \times 120(.4)=8.96 \mathrm{~g}$
Allow $8.8-9.0$ or candidate's answer to (d)(i) $\times 120(.4)$

M3 95% yield $=\frac{8.96 \times 95}{100}=8.51 \mathrm{~g}$
Allow 8.3-8.6
M3 dependent on M2
Alternative method
M2 $\quad 0.074(4) \times 95 / 100=0.0707$
M3 $\quad 0.0707 \times 120(.4)=8.51 \mathrm{~g}$
Allow (d)(i) $\times 95 / 100$
Allow 8.3-8.6
M3 dependent on M2

M4. (a) (i) $M_{r} \mathrm{MgO}=40.3$
If used 40 then penalise this mark but allow consequential M2 (0.0185)

$$
\begin{aligned}
& 0.741 / 40.3=0.0184 \\
& 0.018 \text { with no } M_{r} \text { shown = } 0 \\
& \text { Penalise if not } 3 \text { sig figs in this clip only }
\end{aligned}
$$

(ii) $0.0184 \times \underline{5 / 2}=0.0460$

Allow 0.0459 to 0.0463
Allow their (a)(i) $\times 5 / 2$ ie allow process mark of $\times 5 / 2$ but insist on a correct answer being written down Ignore sig figs
(b) $\mathrm{pV}=\mathrm{nRT}$

Ignore units
$11.1\left(\mathrm{dm}^{3}\right)$
3 marks for 11.1 (dm³)
However if $11.1 \mathrm{~m}^{3}$ or cm^{3} allow 2 (ie penalise wrong units in final answer) Ignore sig figs- but must be 2 sig figs or greater
(c) (i) $0.0152 \times 2=0.0304$
(ii) $0.938 \mathrm{~mol} \mathrm{dm}^{-3}$

Allow range $0.92-0.94$
Minimum 2 sig figs
Allow consequential marking from (c)(i) Ignore units even if wrong

