M1. (a) (i) 0.0212 Need 3 sig figs Allow correct answer to 3 sig figs eg 2.12 x 10² 1 (ii) 0.0106 Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs 1 (iii) $M_r = 100.1$ 1.06 g Allow 100.1 as 'string' Need 3 sig figs or more Consequential on (a)(ii) x 100(.1) 2 (iv) Neutralisation or acid / base reaction Allow acid / alkali reaction Apply list principle 1 (b) (i) T = 304(K) and $P = 100\ 000$ (Pa) Only T and P correctly converted 1 $\frac{100\ 000 \times 3.50 \times 10^{-3}}{0.01 \times 204} \text{OR}\,\text{n} = \frac{\text{PV}}{\text{RT}}$ 8.31×304 1 0.139 (mol) Allow <u>0.138 – 0.139</u> 1 (ii) 0.0276 - 0.0278(mol) Allow answer to (b)(i) divided by 5 leading to a correct

1

answer Allow 0.028

(c) 4.20 g Ca(NO₃)₂

$Ca(NO_3)_2 H_2O$

4.20 164(.1)	<u>1.84</u> 18
	<i>Mark is for dividing by the correct Mr values M2 and M3 dependent on correct M1</i>
0.0256	0.102 M2 can be awarded here instead
1 :	3.98
<i>x</i> = 4	
	If Ca(NO ₃) ₂ .4H ₂ O seen with working then award 3 marks
	Credit alternative method which gives $x = 4$

[12]

1

1

M2. (a)	(i)	Volume of crater-lake solution on <i>x</i> -axis
		Do not penalise missing axes labels.
		If axes unlabelled use data to decide.
		Lose this mark if axes mis-labelled.

Sensible scales

Lose this mark if **plotted points** do not cover at least half the paper or plot goes off the squared paper.

All points plotted correctly +/- one square

1

1

1

(ii) Draws appropriate line of best fit, omitting point at 20 cm³ / 15 cm³

		Lose this mark if the line deviated towards the anomalous result. Lose this mark if the candidate's line is doubled or kinked.	
		Candidate does not have to extrapolate to the origin.	1
	(iii)	16.5 cm³ +/– 0.5 cm³ Accept this answer only. Do not mark consequentially on candidate's graph.	1
	(iv)	Value corresponding to 10 cm³ crater-lake solution / 6.00 cm³ Must have correct identity for explanation mark. Accept results aren't concordant.	1
		Greatest % error from use of burette Accept difficult to be accurate with small volumes (owtte).	1
(b)	(i)	pV = nRT Accept any correct rearrangement. Ignore case.	1
	(ii)	V = 81.0 × 10 ⁻⁶ or 8.1 × 10 ⁻⁵	1
		n = (1 × 10 ⁵ × 81.0 × 10 ⁻⁶) / (8.31 × 298) Mark consequentially on candidate's volume.	1
		n = 3.27 × 10 ⁻³ (mol) Correct answer without working scores one mark only. Allow consequential mark using incorrect conversion. Incorrect units lose this mark.	1

(iii) $M_r \text{ CaCO}_3 = 100.1 \text{ (M1)}$ Accept 100 (can score this mark in calculation for M2 and M3).

1

1

1

1

1

1

[17]

Moles $CaCO_3 = (3.27 \times 10^{-3} \times 10) = 3.27 \times 10^{-2}$ (M2) *Do not penalise lack of units. Allow b(ii)* × 10 *Allow* 1.25 × 10⁻³ × 10

Mass $CaCO_3 = M1 \times M2$ (= 3.27 g) Correct mass without working scores one mark only. Allow 1.25 × 10⁻² × 10 × 100.1= 12.5 g

(iv) (3.27 / 95) × 100 Accept (b(iii) / 95) × 100. Do not penalise precision.

3.44 g

Do not penalise lack of units. Using 12.5 g gives 13.2 g Correct answer without working scores 2 marks.

(v) Abundant / readily available Accept not caustic or alkaline.

> Non-corrosive Accept insoluble so safe to add in excess (owtte).

M3. (a) (i) 4.98×10^{-3}

Only

(ii) 2.49 × 10⁻³
 Allow answer to (a)(i) ÷ 2
 Allow answers to 2 or more significant figures

1

1

1

- (iii) 2.49 × 10^{-₂}
 Allow (a)(ii) × 10
 Allow answers to 2 or more significant figures
- (iv) 138.2 3.44 divided by the candidate.s answer to (a)(iii) 138.2 or 138.1 (i.e. to 1 d.p.)
- (v) $(138 60) \div 2 = 39.1$ *Allow* 39 - 39.1 *Allow* ((a)(iv) - 60) \div 2

1

1

1

1

1

K/potassium Allow consequential on candidate's answer to (a)(iv) and (a)(v) if a group 1 metal Ignore + sign

(b) PV = n RT or rearranged If incorrectly rearranged CE = 0

 $T = \frac{\frac{0.022 \times 100000}{0.658 \times 8.31}}{Correct M2 \ also \ scores \ M1}$

402(.3) K (or 129 °C) allow 402-403K (c)

(d)

shatters/breaks

Pressure build up from gas/may explode/stopper fly out/glass

1

1

1

1

1

1

1

	Penalise incorrect gas					
(i)	<i>M</i> _r =	84.3				
		If 84 used, max 1				
	<u>6.27</u>	<u>6.27</u> = 0.074(4)				
	84.3					
	CE if not 84 or 84.3 Allow answers to 2 or more sianificant figures					
		M2 = 0.074-0.075				
(ii)	М1	M MaSO = 120(4)				
(")		allow 120.3 and 120.1				
		CE if wrong Mr				
	M2	Expected mass MgSO₄ = 0.074(4) × 120(.4) = 8.96 g				
		Allow 8.8 – 9.0 or candidate's answer to $(d)(i) \times 120(.4)$				
		8.96 × 95				
	М3	95% yield = ¹⁰⁰ = 8.51 g <i>Allow</i> 8.3 – 8.6				
		M3 dependent on M2				
	Alternative method					
	M2	0.074(4) × 95/100 = 0.0707				
	М3	$0.0707 \times 120(.4) = 8.51 \text{ g}$				
		Allow 8.3 – 8.6				
		M3 dependent on M2				

M4.	(a)	(i)	$M_{\rm r} {\rm MgO} = 40.3$
			If used 40 then penalise this mark but allow consequential M2 (0.0185)

$$0.741/40.3 = 0.0184$$

 0.018 with no M_r shown = 0
Penalise if not 3 sig figs in this clip only

(ii) $0.0184 \times \frac{5/2}{2} = 0.0460$ Allow 0.0459 to 0.0463 Allow their (a)(i) $\times 5/2$ ie allow process mark of $\times 5/2$ but insist on a correct answer being written down Ignore sig figs

0.402 × 8.31 × 333)

 $(V = 100\,000)$

If rearranged incorrectly then lose M1 If this expression correct then candidate has scored first mark

0.0111

Ignore units

11.1 (dm³)

3 marks for 11.1 (dm³) However if 11.1 m³ or cm³ allow 2 (ie penalise wrong units in final answer) Ignore sig figs- but must be 2 sig figs or greater

1

1

1

1

1

1

(c) (i) 0.0152 × 2 = 0.0304

(ii) 0.938 mol dm⁻³

Allow range 0.92 – 0.94 Minimum 2 sig figs Allow consequential marking from (c)(i) Ignore units even if wrong

[8]

1

1