M1.(a)	pV =	nRT	<i>Do not penalise incorrect use of capitals / lower case letters.</i> <i>Accept correct rearrangement of equation.</i>		1	
(b)	2 C	₄H ₁₀ + ($5O_2 \rightarrow 4CH_3COOH + 2H_2O$ Accept any correct combination of multiples, including fractions.		1	
(c)	23.	0 g etł	nanol produces 30.0 g ethanoic acid		1	
	15.	1% (4.	54 ×100 / 30) Do not penalise precision. 15.1% scores 2 marks. Accept consequential answer on wrong mass of ethanoic acid for second mark only.		1	[4]
M2.	(a)	(i) 0.02	M, = 132.1 132 238 Allow 0.024 Allow 0.0237 Penalise less than 2 sig fig once in (a)	1		
	(ii)	0.04	176 0.0474-0.0476 Allow (a) (i) × 2	1		

(iii) 1.21

Allow consequential from (a) (ii)
ie allow (a) (ii) × 1000/39.30
Ignore units even if wrong

 34×100

- (b) 212.1 Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products If 34/212.1 seen correctly award M1
 - = 16.0(3)%

Allow 16% 16 scores 2 marks

(c) 100(%)

Ignore all working

1

1

1

1

		PV	
(d)	PV = nRT	or n = \overline{RT}	
		If rearranged incorrectly lose M1 and M3	1
			1
	10000	JU ×1.53×10 ⁻²	
	n =	8.31×310	
		M2 for mark for converting P and T into correct units in any expression	1
	= 0.59(4)		
		Allow 0.593	
		M3 consequential on transcription error only not on incorrect <i>P</i> and T	
			1

 $\begin{array}{ccc} (e) & (Na_2SO_4) & H_2O \\ & (44.1\%) & 55.9\% \end{array}$

M1 is for 55.9

44.1/142.1	55.9/18			
0.310	3.11			
= 1	= 10			
	Alternative method g	gives180 for water part = 2	marks	1
				1
<i>x</i> = 10				

•				
	X =	10 =	3 n	narks

M3.

(a)

(i)

0.00301/ 3.01 × 10⊰;

Penalise < 3sf in (a)(i); Allow $3.01 \times 10^{-3} - 3.05 \times 10^{-3}$. (for candidates who have used Mg as 24)

(ii) 0.00602

Allow correct answer $a(i) \times 2$.

- (iii) 0.00965/ 9.65 × 10⁻³;
 Allow 0.009646/ 0.0096-0.0097.
- (iv) 0.00363 moles;
 Allow range 0.0035 to 0.0037.
 Allow (a)(iii) 2 (a)(ii) (must be positive).

1

1

1

1

1

1

1

[13]

(b) PV = nRT;

Allow all capitals/ lower case.

 $0.512 \times 8.31 \times 298$

V = 96000 ;

M2 Mark is for <u>all numbers correct</u>. If units in answer are in dm³ allow this expression with 96 in denominator.

1

1

1

1

1

0.0132 m³/ 13.2 dm³;
M3 <u>Must have correct units</u> /
allow 13200 cm³.
Allow min 2 sig figs in answer.

(c) O = 69.6 (%);

30.4	69.6	
14	16	2.17 : 4.35
	Use o	of 7/8 CE then M1 only.

(1:2) <u>NO₂</u>

Mark for formula not ratio. If NO_2 and no working shown then allow 1 mark. If $69.6\% + NO_2$ only = 2. Need to see evidence of M2 working. Allow M2 conseq on the wrong M1 (ie max 1).

[10]

M4.	(a)	(i)	Moles of gas produced = 3	1
		PV	= nRT	1
		V =	nRT/P = 3 × 8.31 × 298/100000	1
		= 7.	.43 × 10⁻² m³	1

(b) (i) any two from:

complete combustion)

exhaust gases hot so would boil the solution away solution would splash reaction might be too slow would need continuous supply of solution and/or replacement of products

(ii) Commercial advantage could sell chlorine and/or hydrogen
 environmental disadvantage generation of electricity likely to lead to release of CO₂ (or chlorine toxic)

(c)	% O = 74%	1
	N:O = 26/14:74/16	1
	= 1.86: 4.63 = 1:2.5 therefore formula is N_2O_5	1
(d)	$2N_2O \rightarrow 2N_2 + O_2$	1
(e)	Proportion of O_2 increased leading to higher T (or more	

[14]

1

1

2

1

M5.	(a))	(i)	Avogadro's number/constant of molecules/particles/species / 6 [Not 'atoms']	× 10 ²³
			Or sa	ame number of particles as (there are atoms) [Not molecules]	
			in 12	.(00)g of ¹² C	1
	(i	ii)	Mole	$s O_2 = \frac{0.350}{32}$ (= 1.09 × 10 ⁻² mol)	1
					1
			= 29	(× 1.09 × 10 ⁻ ²) [Accept answers via 4 separate mole calculations]	1
					1
			= 0.3	16 – 0.317 mol [answer to 3 + sf] [Mark conseq on errors in M1/M2] (1)	1
	(i	iii)	Mole	es of nitroglycerine = $4 \times 1.09 \times 10^{-2}$ (= 0.0438 mol) [Mark conseq on their moles of O_2]	1
			<i>M</i> , of	nitroglycerine = 227 or number string	1
			Mole	s of nitroglycerine = 227 × 0.0438 = 9.90 – 9.93(<u>g)</u> [answer to 3+ sf] [If string OK but final answer wrong then allow M6 but AE for M7] [Mark conseq on error in M.] [Penalise wrong units] [Penalise sig. fig. errors once only in whole question]	
	(p) t	oV = ₀ = ¹ /2	nRT <u>∞RT</u> ∀_:	or pV = $\frac{mRT}{V}$ or p = $\frac{mRT}{V}$ = $\frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}}$	1
					1
	:	= 79	8009	s or 7980 or 7.98 [ignore s.f.]	

1

units = Pa **or** kPa **or** MPa

(as appropriate)

[If error in conversion from Pa, treat as a contradiction of the units mark]
[If transfer error, mark conseq but penalise M2]
[If data from outside of above used, penalise M2 and M3]
[If pV expression incorrectly rearranged, penalise M2 and M3]
[if T = 1373 K used, penalise M2]

1