M1.(a) (i) $\quad-\log \left[\mathrm{H}^{+}\right]$
(ii) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(b) (i) $\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}$
$\mathrm{pH}=6.63$
Penalise fewer than 3 sig figs but allow more than $2 d p$
(ii) $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

1
(iii) M1 $\quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{w} /\left[\mathrm{OH}^{-}\right]$
if upside down or CE, allow M3 only for correct use of their [H^{+}]

M2 $\quad\left(=5.48 \times 10^{-14} / 0.140\right)=3.91 \times 10^{-13}$

M3 $\mathrm{pH}=12.4(1)$
not 12.40 (AE from 12.407)
Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp - do not insist on 3 sig figs Not allow $\mathrm{pH}=14-\mathrm{pOH}$ but can award M 3 only for $\mathrm{pH}=$ 13.1(46)

Can award all three marks if $p K_{w}=13.26$ is used
(c) $\mathbf{M 1} \mathrm{mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(30 \times 10^{-3}\right) \times 0.20=6.0 \times 10^{-3}$ mark for answer

M2 $\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=\left(25 \times 10^{-3}\right) \times 0.15=3.75 \times 10^{-3}$ mark for answer

M3 $\mathrm{mol} \mathrm{H}^{+}=\left(25 \times 10^{-3}\right) \times 0.15 \times 2=7.5 \times 10^{-3}$
$\mathrm{OR} \times S$ mol $\mathrm{H}_{2} \mathrm{SO}_{4}=0.75 \times 10^{-3}$
if factor of 2 missed or used wrongly, CE - lose $M 3$ and next
mark gained. In this case they must then use K_{w} to score any
more.
see examples below

M4 $\mathrm{XS} \mathrm{mol} \mathrm{H}{ }^{+}=1.5 \times 10^{-3}$

M5 $\quad\left[\mathrm{H}^{+}\right]=\left(1.5 \times 10^{-3}\right) \times(1000 / 55)=0.0273$
if no use or wrong use of volume, lose M5 and M6 except if 1000 missed
$A E-1(p H=4.56)$

M6 $\mathrm{pH}=1.56$
Penalise fewer than 3 sig figs but allow more than 3 sfs
For values above 10, allow 3sfs - do not insist on 2 dp .
For values below 1, allow 2dp - do not insist on 3 sig figs
1

M2. (a) (i) $-\log \left[\mathrm{H}^{+}\right]$
or $\log 1 /\left[\mathrm{H}^{+}\right]$
penalise ()
(ii) $\left[\mathrm{H}^{+}\right]=0.56$
mark for the answer; allow 2dp or more
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=1 / 2 \times 0.56=0.28$
(b) (i) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

OR
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ etc
(ii) $\quad \mathrm{mol}$ acid $=\left(25.0 \times 10^{-3}\right) \times 0.41=1.025 \times 10^{-2}$ or 1.03×10^{-2}
$[\mathrm{NaOH}]=1.025 \times 10^{-2} / 22.6 \times 10^{-3}=0.45(4)$
mark for answer
if not 0.454 look back for error

OR

$[\mathrm{NaOH}]=1.03 \times 10^{-2} / 22.6 \times 10^{-3}=0.456$ or 0.46
(iii) cresol purple
(iv) NaOH reacts with carbon dioxide (in the air)
(c) (i) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{}$
allow molecular formulae or minor slip in formulae
penalise ()
allow $\mathrm{H}_{3} \mathrm{O}^{+}$
not allow HA etc
(ii) $K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ or with numbers
allow HA etc here
This can be scored in part (c)(i) but doesn't score there.
$\left[H^{+}\right]=\left(\sqrt{ }\left(1.74 \times 10^{-5} \times 0.410\right)=\sqrt{ }\left(7.13 \times 10^{-6}\right)\right)=2.67 \times 10^{-3}$
mark for 2.67×10^{-3} or 2.7×10^{-3} either gives 2.57
$\mathrm{pH}=2.57 \quad$ can give three ticks here for (c)(ii) penalise decimal places < $2>$
pH mark conseq on their [H^{+}]
so 5.15 gets 2 marks where square root not taken
(iii) $\quad \mathbf{M 1 ~ m o l ~ O H}=\left(10.0 \times 10^{-3}\right) \times 0.10=1.0 \times 10^{-3}$ If no subtraction or other wrong chemistry the max score is 3 for M1, M2 and M4

M2 orig mol HA $=\left(25.0 \times 10^{-3}\right) \times 0.41=0.01025$
or 1.025×10^{-2} or 1.03×10^{-2}

M3 mol $\underline{H A}$ in buffer $=$ orig mol HA $-\mathrm{mol} \mathrm{OH}^{-}$
$=0.00925$ or 0.0093
If A^{-}is wrong, max 3 for M1, M2 and M3 or use of $p H=p K a-\log [H A] /[A-]$
$\mathbf{M 4} \mathrm{mol} \mathrm{A}^{-}$in buffer $=\mathrm{mol} \mathrm{OH}^{-}=1.0 \times 10^{-3}$
Mark is for insertion of correct numbers in correct expression for [H^{+}]

1

M5 $[\mathrm{H}]=\left(\frac{\mathrm{Ka}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOO}^{-}\right]}=\right)$
$\frac{\left(1.74 \times 10^{-5}\right)(0.00925)}{0.0010}$ or $\frac{\left(1.74 \times 10^{-5}\right)(0.00930)}{0.0010}$
$\left(=1.61 \times 10^{-4}\right.$ or $\left.1.62 \times 10^{-4}\right)$

M6 $\mathrm{pH}=3.79$ can give six ticks for 3.79
if [HA]/[A-] upside down lose M5 \& M6
If wrong method e.g. $\left[H^{+}\right]^{2} /[H A]$ max 3 for M1, M2 and M3
Some may calculate concentrations $[H A]=0.264$ and $\left[A^{-}\right]=0.0286$ and rounding this to 0.029 gives $\mathrm{pH}=3.80$ (which is OK)

NB Unlike (c)(ii), this pH mark is NOT awarded conseq to their [H^{+}] unless following AE

BEWARE: using 0.01025 wrongly instead of 0.00925 gives pH $=3.75$
(this gets 3 for M1, M2 \& M4)

M3.(a) (i) $\quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(ii) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(iii) $\quad\left(2.0 \times 10^{-3}\right) \times 0.5=1.0 \times 10^{-3}$
(iv) $\left[\mathrm{H}^{+}\right]=\frac{4.02 \times 10^{-14}}{1.0 \times 10^{-3}}$
$\left(=4.02 \times 10^{-11}\right)$
$\mathrm{pH}=10.40$

$$
\mathbf{1}
$$

(b) (i) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right]}{\left[\mathrm{CH}^{-}\right]}$ $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$
$=\underset{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{H}^{+}\right]}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(1.35 \times 10^{-5}\right) \times 0.125 \quad\left(=1.30 \times 10^{-3}\right)$
$\mathrm{pH}=2.89$
(c) (i) $\quad\left(50.0 \times 10^{-3}\right) \times 0.125=6.25 \times 10^{-3}$
(ii) $\left(6.25 \times 10^{-3}\right)-(1.0 \times 10-3)=5.25 \times 10^{-3}$
(iii) mol salt formed $=1.0 \times 10^{-3}$

$$
\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}-\right)}
$$

$$
\begin{aligned}
& =\left(1.35 \times 10^{-5}\right) \times \frac{\left(5.25 \times 10^{-3}\right) / V}{\left(1.0 \times 10^{-3}\right) / V}\left(=7.088 \times 10^{-5}\right) \\
& \mathrm{pH}=4.15
\end{aligned}
$$

M4.A

