M1. (a) Hydrogen bonding (1) between $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} (1)
(b) (i) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$(1)
(ii) Ammonia is weak base (1)

NOT partially ionised
Equilibrium to left or incomplete reaction (1)
(c) A proton donor (1)
(d) Buffer solution: A solution which resists change in pH (1) when small amounts of acid or base added or on dilution (1)

Reagent: $\mathrm{NH}_{4} \mathrm{Cl}(1)$
Allow a correct strong acid
(e) (i) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right][\mathrm{A}] /[\mathrm{HA}]$ (1)

$$
=\left[\mathrm{H}^{+}\right][0.125 \times 4](1) / 1.00
$$

$$
\left[\mathrm{H}^{+}\right]=1.70 \times 10^{-5} / 0.125 \times 4=3.40 \times 10^{-5}(1)
$$

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=4.47$ (1)
Allow pH conseq to $\left[\mathrm{H}^{+}\right]$if 2 place decimals given
(ii) $\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$ (1)

M3. Penalise pH given to 1 dp first time it would have scored only
(a) (i) $\mathrm{K}_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$(1)
(ii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right](1)$
or in words or below unless contradiction
(iii) Calculation: $\left[\mathrm{H}^{+}\right]=\sqrt{5.48 \times 10^{-14}}$
$=2.34 \times 10^{-7}$
$\therefore \mathrm{pH}=6.63$ or 6.64 (1)
Explanation: pure water $\therefore\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right](1)$
(b) (i) $\left[\mathrm{OH}^{-}\right]=0.150$
$\therefore\left[\mathrm{H}^{+}\right]=10^{-14} / 0.15=6.66 \times 10^{-14}$
or $\mathrm{pOH}=0.82$
$\therefore \mathrm{pH}=13.18$ (1)
or $\mathrm{pH}=13.17$
(ii) moles $\mathrm{OH}^{-}=\left(35 \times 10^{-3}\right) \times 0.150=5.25 \times 10^{-3}(1)^{\mathrm{a}}$

$$
\text { moles } \mathrm{H}^{+}=\left(40 \times 10^{-3}\right) \times 0.120=4.8(0) \times 10^{-3}(1)^{b}
$$

\therefore excess moles of $\mathrm{OH}^{-}=4.5 \times 10^{-4}(1)^{\text {c }}$
$\therefore\left[\mathrm{OH}^{-}\right]=\left(4.5(0) \times 10^{-4}\right) \times 1000 / 75^{\text {d }}(1)$ 。 $=6.0(0) \times 10^{-3}$
$\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{6.00 \times 10^{-3}}=1.66 \times 10^{-12}$ or $\mathrm{pOH}=2.22$
$\therefore \mathrm{pH}=11.78(1)^{\mathrm{t}}$ or 11.77
(c) (i) $\mathrm{K}_{\mathrm{a}}=\frac{H X]}{[H X}$
(ii) $\left[\mathrm{H}^{+}\right]=1.80 \times 10^{-2} \times 0.150=2.70 \times 10^{-3}(1)$

$$
\begin{align*}
\mathrm{K}_{\mathrm{a}}= & \frac{\left[H^{+}\right]^{2}}{[H X]}(1)=\frac{\left(2.70 \times 10^{-3}\right)^{2}}{0.150}=4.86 \times 10^{-5}(1) \mathrm{mol} \mathrm{dm}^{-3}(\tag{1}\\
& \text { or } \frac{\left(2.70 \times 10^{-3}\right)^{2}}{0.1473}=4.95 \times 10^{-5}
\end{align*}
$$

Notes

(a) If K_{w} includes $\mathrm{H}_{2} \mathrm{O}$ allow 6.63 if seen otherwise no marks likely
(b) (ii) If no vol, max 4 for a, b, c, f answer $=10.65$

If wrong volume max 5 for a, b, c, e, f
If no substraction $\max 3$ for a, b, d
If missing 1000 max 5 for a, b, c, d, f answer $=8.78$
If uses excess as acid, max 4 for a, b, d, f answer $=2.22$
If uses excess as acid and no volume, max 2 for a,
b answer $=3.35$
(c) If wrong K_{a} in (i) max 2 in part (ii) for $\left[\mathrm{H}^{+}\right]$(1) and conseq units (1) but mark on fully from minor errors eg no [] or charges missing

Organic points

(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from Ip to atom / space e.g.

OR

(2) Structures
penalise sticks (i.e.
 once per paper

Penalise once per paper

$$
\frac{}{} \quad \frac{\mathrm{CH}_{3}}{\text { ar }} \mathrm{CH}_{3}-\text { or }-\mathrm{CH}_{3} \text { or } \stackrel{\mathrm{I}}{ }{ }^{\mathrm{C}} \text { or } \mathrm{CH}_{3}
$$

