M1.B

[1]

M2.D

[1]

M3.C

[1]

M4. (a) (i) Avogadro's number/constant of molecules/particles/species / 6 × 10²³ [Not 'atoms']

1

Or same number of particles as (there are atoms) [Not molecules]

in 12.(00)g of 12C

1

(ii) Moles $O_2 = \frac{0.350}{32}$ (= 1.09 × 10⁻² mol)

1

 $= 29 (\times 1.09 \times 10^{-2})$

[Accept answers via 4 separate mole calculations]

1

= 0.316 - 0.317 mol [answer to 3 + sf] [Mark conseq on errors in M1/M2] (1)

1

(iii) Moles of nitroglycerine = $4 \times 1.09 \times 10^{-2}$ (= 0.0438 mol) [Mark conseq on their moles of O_2]

1

 M_r of nitroglycerine = 227 or number string

Moles of nitroglycerine = $227 \times 0.0438 = 9.90 - 9.93(\underline{g})$

[answer to 3+ sf]

[If string OK but final answer wrong then allow M6 but AE for M7]

[Mark conseq on error in M.] [Penalise wrong units] [Penalise sig. fig. errors once only in whole question]

(b)
$$pV = nRT \text{ or } pV = \frac{mRT}{V}$$
 or $p = \frac{mRT}{V}$

 $p = \frac{MRT}{V} = \frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}}$

= 7980093 **or** 7980 **or** 7.98 *[ignore s.f.]*

units = Pa **or** kPa **or** MPa (as appropriate)

[If error in conversion from Pa, treat as a contradiction of the units mark]

[If transfer error, mark conseq but penalise M2]

[If data from outside of above used, penalise M2 and M3] $\,$

[If pV expression incorrectly rearranged, penalise M2 and M3]

[if T = 1373 K used, penalise M2]

[11]

1

1

1

1

1

1

1

M5.(a) UV light

CCl₄ → CCl₃• + •Cl

(b)
$$Cl \cdot + O_3 \longrightarrow ClO \cdot + O_2$$

1

$$CIO \cdot + O_3 \longrightarrow CI \cdot + 2O_2$$

1

(c) M_r of $CF_3CI = 104.5$

Moles freon = $1.78 \times 10^{-4} \times 10^{3} / 104.5 = 1.70 \times 10^{-3}$

1

Number of molecules = $1.70 \times 10^{-3} \times 6.02 \times 10^{23} = 1.02 \times 10^{21}$

1

1

Molecules in 500 cm³ = $(1.02 \times 10^{21} \times 500 \times 10^{-6}) / 100 = 5.10 \times 10^{15}$ Allow answer in the range $5.10-5.13 \times 10^{15}$ Answer must be given to this precision

[7]

M6. (a) (i) <u>0.0212</u>

Need 3 sig figs
Allow correct answer to 3 sig figs eg 2.12 x 10²

1

(ii) 0.0106

Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs

1

(iii) $M_r = 100.1$

1.06 g

Allow 100.1 as 'string'
Need 3 sig figs or more
Consequential on (a)(ii) x 100(.1)

2

(iv) Neutralisation or acid / base reaction Allow acid / alkali reaction Apply list principle

1

(b) (i)
$$T = 304(K)$$
 and $P = 100\ 000$ (Pa)
Only T and P correctly converted

1

$$\frac{100\ 000 \times 3.50 \times 10^{-3}}{8.31 \times 304} \text{ OR n} = \frac{\text{PV}}{\text{RT}}$$

1

Allow <u>0.138 - 0.139</u>

(ii) 0.0276 - 0.0278 (mol)

> Allow answer to (b)(i) divided by 5 leading to a correct answer Allow 0.028

> > 1

4.20 g Ca(NO₃)₂ (c)

1

Ca(NO₃)₂ H₂O

$$\frac{4.20}{164(.1)}$$
 $\frac{1.84}{18}$

Mark is for dividing by the correct Mr values M2 and M3 dependent on correct M1

0.0256 0.102

M2 can be awarded here instead

3.98 1 :

x = 4

If Ca(NO₃)₂.4H₂O seen with working then award 3 marks Credit alternative method which gives x = 4

1

[12]

M7.B

[1]

1

M8.(a)

Method 1		Method 2		
Mass of H ₂ O = 4.38-2.46		Percentage of H ₂ O = 44%		
(= 1.92 g)				
If there is an AE in M1 then can score M2 and M3 If M, incorrect can only score M1				1
ZnSO₄	H_2O	ZnSO4	H2O	
<u>2.46</u>	<u>1.92</u>	<u>56</u>	<u>44</u>	
161.5	18	161.5	18	
				1
(0.0152	0.107)	(0.347	2.444)	
(1 :	7)	(1:	7)	
x = 7		x = 7		
If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.				1

Page 6

(b) Moles HCl = 0.12(0)

1

If M2 incorrect then CE and cannot score M2, M3 and M4.

mass
$$ZnCl_2 = 0.06 \times 136.4$$

Allow 65.4 + (2 × 35.5) for 136.4

1

= 8.18(4) (g) **OR** 8.2 (g)

Must be to 2 significant figures or more. Ignore units.

1

(c) Moles
$$ZnCl_2 = \frac{10.7}{136.4}$$
 (= 0.0784)

1

OR moles Zn = 0.0784

Mass Zn reacting = $0.0784 \times 65.4 = (5.13 \text{ g})$ *M2 is for their M1* × *65.4*

1

% purity of
$$Zn = \frac{5.13}{5.68} \times 100$$

M3 is M2 \times 100 / 5.68 provided M2 is < 5.68

1

= <u>90.2</u>% *OR* <u>90.3</u>%

Allow alternative methods.

$$M1 = Moles ZnCl_2 = 10.7 (= 0.0784)$$

136.4

 $M2 = Theoretical \ moles \ Zn = \underline{5.68} \ (= 0.0869)$ 65.4

 $M3 = M1 \times 100 / M2 = (0.0784 \times 100 / 0.0869)$

M4 = 90.2% OR 90.3%

1

(d) Ionic

If not ionic CE = 0/3

1

Strong (electrostatic) attraction (between ions)

1

1

between oppositely charged ions / + and – ions / F^- and Zn^{2+} ions If IMF, molecules, metallic bonding implied CE=0/3

[14]