Q1 .W	/hich	of the following contains the most chloride ions?				
	Α	10 cm³ of 3.30 × 10 ⁻² mol dm ⁻³ aluminium chloride solution	0			
	В	20 cm³ of 5.00 × 10 ⁻² mol dm ⁻³ calcium chloride solution	0			
	С	30 cm³ of 3.30 × 10 ⁻² mol dm ⁻³ hydrochloric acid	0			
	D	40 cm³ of 2.50 × 10 ⁻² mol dm ⁻³ sodium chloride solution	0			
			(Total 1 mark)			
Q2. T		moval of silicon dioxide with limestone in the Blast Furnace ca wing equation.	an be represented by the			
		$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(l) + CO_2(g)$)			
	The volume of carbon dioxide, measured at 298 K and 1.01 × 10 ⁵ Pa, formed in this reaction during the removal of 1.00 tonne (1000 kg) of silicon dioxide is					
	Α	24.5 dm³				
	В	408 dm ³				
	С	24.5 m³				
	D	408 m³	(Total 1 mark)			
			,			
Q3. The removal of silicon dioxide with limestone in the Blast Furnace can be represented by the following equation.						
		$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(l) + CO_2(g)$)			
		minimum mass of calcium carbonate needed to remove 1.00 on dioxide is	tonne (1000 kg) of			
	Α	0.46 tonne				
	В	0.60 tonne				

С

D

1.67 tonne

2.18 tonne

Q4.		a larg	llycerine, $C_3H_5N_3O_9$, is an explosive which, on detonation, decomposes rapidly to ge number of gaseous molecules. The equation for this decomposition is given	
			$4C_{\scriptscriptstyle 3}H_{\scriptscriptstyle 5}N_{\scriptscriptstyle 3}O_{\scriptscriptstyle 9}(I) \to 12CO_{\scriptscriptstyle 2}(g) + 10H_{\scriptscriptstyle 2}O(g) + 6N_{\scriptscriptstyle 2}(g) + O_{\scriptscriptstyle 2}(g)$	
	(a)	A sa	ample of nitroglycerine was detonated and produced 0.350 g of oxygen gas.	
		(i)	State what is meant by the term one mole of molecules.	
		(ii)	Calculate the number of moles of oxygen gas produced in this reaction, and	
		(,	hence deduce the total number of moles of gas formed.	
			Moles of oxygen gas	
			Total moles of gas	
		(iii)	Calculate the number of moles, and the mass, of nitroglycerine detonated.	
			Moles of nitroglycerine	
			Mass of nitroglycerine	
				/ >
				(7)

(b) A second sample of nitroglycerine was placed in a strong sealed container and detonated. The volume of this container was 1.00×10^{-3} m³. The resulting decomposition produced a total of 0.873 mol of gaseous products at a temperature

	of 1100 K.	
	State the ideal gas equation and use it to calculate the pressure in the container after detonation.	
	(The gas constant R = 8.31 J K ⁻¹ mol ⁻¹)	
	Ideal gas equation	
	Pressure	
	(Total 11 ma	(4) irks)
	(Total 11 lilla	ii Ko
role	s an effective fire extinguisher but it is no longer used because of its toxicity and its in the depletion of the ozone layer. In the upper atmosphere, a bond in CCl₄ breaks reactive species are formed.	
(a)	Identify the condition that causes a bond in CCI₄ to break in the upper atmosphere. Deduce an equation for the formation of the reactive species.	
	Condition	
	Equation	
		(0)
		(2)
(b)		
	One of the reactive species formed from CCl₄ acts as a catalyst in the decomposition of ozone.	
	decomposition of ozone.	

Equation 2

A small amount of the freon CF ₃ Cl with a mass of 1.78 × 10 ⁻⁴ kg escaped from a refrigerator, into a room of volume 100 m ³ . Assuming that the freon is evenly distributed throughout the air in the room, calculate the number of freon molecules in a volume of 500 cm ³ . Give your answer to the appropriate number of significant figures.
The Avogadro constant = 6.02 × 10 ²³ mol ⁻¹ .

Number of molecules =	
Nulliber of Holecules –	
	(3)
	(5)
	(Total 7 marks)
	(Total / Illains

- **Q6.** Norgessaltpeter was the first nitrogen fertiliser to be manufactured in Norway. It has the formula $Ca(NO_3)_2$
 - (a) Norgessaltpeter can be made by the reaction of calcium carbonate with dilute nitric acid as shown by the following equation.

$$CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(I)$$

In an experiment, an excess of powdered calcium carbonate was added to 36.2 cm³ of 0.586 mol dm⁻³ nitric acid.

(i)	Calculate the amount, in moles, of HNO₃ in 36.2 cm³ of 0.586 mol dm⁻³ nitric acid. Give your answer to 3 significant figures.				
		(1)			

(ii) Calculate the amount, in moles, of CaCO₃ that reacted with the nitric acid. Give your answer to 3 significant figures.

	(iii)	Calculate the minimum mass of powdered CaCO ₃ that should be added to react with all of the nitric acid.	
		Give your answer to 3 significant figures.	
			(2)
	(iv)	State the type of reaction that occurs when calcium carbonate reacts with nitric acid.	
			(1)
			(1,
(b)	Nor	gessaltpeter decomposes on heating as shown by the following equation.	
		$2Ca(NO_3)_2(s) \longrightarrow 2CaO(s) + 4NO_2(g) + O_2(g)$	
	A sa	imple of Norgessaltpeter was decomposed completely.	
	and	gases produced occupied a volume of $3.50 \times 10^{-3} \mathrm{m}^3$ at a pressure of 100 kPa a temperature of 31 °C. gas constant $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$)	
	(i)	Calculate the total amount, in moles, of gases produced.	
			(3)
	(ii)	Hence calculate the amount, in moles, of oxygen produced.	

	(c)	Hydrated calciuis an integer.	um nitrate can be represented by the formula Ca(NO₃)₂xH₂C	where x		
		A 6.04 g sample	e of Ca(NO ₃) ₂ .xH ₂ O contains 1.84 g of water of crystallisation	١.		
		Use this information Show your work	ation to calculate a value for x . king.			
				(3) (Total 12 marks)		
				(Total 12 marks)		
Q7. lr			ntify a Group 2 metal (X), 0.102 g of X reacts with an excess acid according to the following equation.	s of		
			$X + 2HCI \longrightarrow XCl_2 + H_2$			
	The volume of hydrogen gas given off is 65 cm 3 at 99 kPa pressure and 303 K. The gas constant is $R = 8.31$ J K $^{-1}$ mol $^{-1}$.					
	Whic	h is X?				
	Α	Barium	0			
	В	Calcium	0			
	С	Magnesium	0			
	D	Strontium	0	(Total 1 mark)		

Q8. Z	inc fo	rms many different salts including zinc sulfate, zinc chloride and zinc fluoride.	
	(a)	People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO ₄ .xH ₂ O) as a dietary supplement.	
		A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.	
		Use these data to calculate the value of the integer x in ZnSO ₄ . x H ₂ O Show your working.	
			(3)
	(b)	Zinc chloride can be prepared in the laboratory by the reaction between zinc oxide and hydrochloric acid. The equation for the reaction is	
		ZnO + 2HCl> ZnCl ₂ + H ₂ O	
		A 0.0830 mol sample of pure zinc oxide was added to 100 cm³ of 1.20 mol dm⁻³ hydrochloric acid.	
		Calculate the maximum mass of anhydrous zinc chloride that could be obtained from the products of this reaction.	

	oride can also be prepared in the laboratory by the reaction between zir rogen chloride gas.	nc
	$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$	
•	re sample of zinc powder with a mass of 5.68 g was reacted with hydrogas until the reaction was complete. The zinc chloride produced had a 10.7 g.	gen
	e the percentage purity of the zinc metal. ur answer to 3 significant figures.	
Predict t	the type of crystal structure in solid zinc fluoride and explain why its mel nigh.	lting