Q1.	(a)	One isotope of sodium has a relative mass of 23.	
	(i)	Define, in terms of the fundamental particles present, the meaning of the term <i>isotopes</i> .	
	(ii)	Explain why isotopes of the same element have the same chemical	
		properties.	
	(iii)	Calculate the mass, in grams, of a single atom of this isotope of sodium. (The Avogadro constant, L , is $6.023 \times 10^{23} \text{ mol}^{-1}$)	
			(5)
(i	b) Giv	re the electronic configuration, showing all sub-levels, for a sodium atom.	
			(1)
(0	c) Exp	plain why chromium is placed in the d block in the Periodic Table.	
			(1)

	(d)	An atom has half as many protons as an atom of ²⁸ Si and also has six fewer neutrons than an atom of ²⁸ Si. Give the symbol, including the mass number and the atomic number, of this atom.		
			(2) (Total 9 marks)	
Q2.			The equation for the reaction between magnesium carbonate and hydrochloric is given below.	
		aoia	$MgCO_3 + 2HCI \rightarrow MgCI_2 + H_2O + CO_2$	
		MgC	n 75.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid were added to 1.25 g of impure O₃ some acid was left unreacted. This unreacted acid required 21.6 cm³ of a 0 mol dm⁻³ solution of sodium hydroxide for complete reaction.	
		(i)	Calculate the number of moles of HCl in 75.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid.	
		(ii)	Calculate the number of moles of NaOH used to neutralise the unreacted HCI.	
		(iii)	Show that the number of moles of HCl which reacted with the MgCO $_{\mbox{\tiny 3}}$ in the sample was 0.0267	
		(iv)	Calculate the number of moles and the mass of MgCO ₃ in the sample, and hence deduce the percentage by mass of MgCO ₃ in the sample.	

		Moles of MgCO ₃	
		Mass of MgCO₃	
		Percentage of MgCO ₃	
			(8)
(b)		ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen.	
	(i)	Use this information to show that the empirical formula of the compound is Na_2SO_3	
	(ii)	When Na ₂ SO ₃ is treated with an excess of hydrochloric acid, aqueous sodium chloride is formed and sulphur dioxide gas is evolved. Write an equation to represent this reaction.	
		(Total 12 ma	(4) arks)

QJ.V		egadro number (L) is $6.02 imes 10^{23}$, the relative molecular mass (M_r) of methanol i		
	Α	6.6 × 10 ²² molecules		
	В	3.3 g of methanol		
	С	2.5 × 10⁻³ m³ of methanol vapour at 300 K and 100 kPa		
	D	70 cm³ of 1.5 M aqueous methanol	(Total 1 mark)	
Q4. U	Jse th	ne information below to answer this question.		
	A saturated solution of magnesium hydroxide, Mg(OH) ₂ , contains 0.1166 g of Mg(OH) ₂ in 10.00 dm ³ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.			
	Whic	ich one of the following is the concentration of Mg²+(aq) ions in the saturated so	lution?	
	A	2.82 × 10 ⁻² mol dm ⁻³		
	В	2.00 × 10 ⁻³ mol dm ⁻³		
	С	2.82 × 10 ⁻³ mol dm ⁻³		
	D	2.00 × 10 ⁻⁴ mol dm ⁻³	(Total 1 mark)	
Q5.		 (a) A sample of ethanol vapour, C₂H₅OH (<i>M_r</i> = 46.0), was maintained at a proof 100 kPa and at a temperature of 366K. (i) State the ideal gas equation. 	ressure	
		(ii) Use the ideal gas equation to calculate the volume, in cm³, that 1.36 g ethanol vapour would occupy under these conditions. (The gas constant <i>R</i> = 8.31 J K⁻¹ mol⁻¹)	of	

			(5)
			(5)
(b)	Мас	nesium nitride reacts with water to form magnesium hydroxide and ammonia.	
	(i)	Balance the equation, given below, for the reaction between magnesium nitride and water.	
		Mg_3N_2 + H_2O \rightarrow $Mg(OH)_2$ + NH_3	
	(ii)	Calculate the number of moles, and hence the number of molecules, of NH ₃ in 0.263 g of ammonia gas. (The Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$)	
			(4)
			(4)
(c)		ium carbonate is manufactured in a two-stage process as shown by the ations below.	
		NaCl + NH $_3$ + CO $_2$ + H $_2$ O \rightarrow NaHCO $_3$ + NH $_4$ Cl	
		2NaHCO₃ → Na₂CO₃ + H₂O + CO₂	
		ulate the maximum mass of sodium carbonate which could be obtained from g of sodium chloride.	

(4) (Total 13 marks)
(+)
/T-4-1 40
II Otal 13 marks