| Q1. | (a) | One isotope of sodium has a relative mass of 23. | | |-----|--------|--|-----| | | (i) | Define, in terms of the fundamental particles present, the meaning of the term <i>isotopes</i> . | | | | | | | | | | | | | | (ii) | Explain why isotopes of the same element have the same chemical | | | | | properties. | | | | | | | | | | | | | | (iii) | Calculate the mass, in grams, of a single atom of this isotope of sodium. (The Avogadro constant, L , is $6.023 \times 10^{23} \text{ mol}^{-1}$) | | | | | | | | | | | | | | | | (5) | | (i | b) Giv | re the electronic configuration, showing all sub-levels, for a sodium atom. | | | | | | (1) | | | | | | | (0 | c) Exp | plain why chromium is placed in the d block in the Periodic Table. | | | | | | | | | | | (1) | | | (d) | An atom has half as many protons as an atom of ²⁸ Si and also has six fewer neutrons than an atom of ²⁸ Si. Give the symbol, including the mass number and the atomic number, of this atom. | | | |-----|-----|---|--|--| | | | | (2)
(Total 9 marks) | | | | | | | | | | | | | | | Q2. | | | The equation for the reaction between magnesium carbonate and hydrochloric is given below. | | | | | aoia | $MgCO_3 + 2HCI \rightarrow MgCI_2 + H_2O + CO_2$ | | | | | MgC | n 75.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid were added to 1.25 g of impure O₃ some acid was left unreacted. This unreacted acid required 21.6 cm³ of a 0 mol dm⁻³ solution of sodium hydroxide for complete reaction. | | | | | (i) | Calculate the number of moles of HCl in 75.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid. | | | | | | | | | | | (ii) | Calculate the number of moles of NaOH used to neutralise the unreacted HCI. | | | | | | | | | | | (iii) | Show that the number of moles of HCl which reacted with the MgCO $_{\mbox{\tiny 3}}$ in the sample was 0.0267 | | | | | | | | | | | (iv) | Calculate the number of moles and the mass of MgCO ₃ in the sample, and hence deduce the percentage by mass of MgCO ₃ in the sample. | | | | | Moles of MgCO ₃ | | |-----|------|--|--------------| | | | Mass of MgCO₃ | | | | | Percentage of MgCO ₃ | | | | | | (8) | | (b) | | ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. | | | | (i) | Use this information to show that the empirical formula of the compound is Na_2SO_3 | (ii) | When Na ₂ SO ₃ is treated with an excess of hydrochloric acid, aqueous sodium chloride is formed and sulphur dioxide gas is evolved. Write an equation to represent this reaction. | | | | | | | | | | (Total 12 ma | (4)
arks) | | QJ.V | | egadro number (L) is $6.02 imes 10^{23}$, the relative molecular mass (M_r) of methanol i | | | |--------------|--|--|----------------|--| | | Α | 6.6 × 10 ²² molecules | | | | | В | 3.3 g of methanol | | | | | С | 2.5 × 10⁻³ m³ of methanol vapour at 300 K and 100 kPa | | | | | D | 70 cm³ of 1.5 M aqueous methanol | (Total 1 mark) | | | Q4. U | Jse th | ne information below to answer this question. | | | | | A saturated solution of magnesium hydroxide, Mg(OH) ₂ , contains 0.1166 g of Mg(OH) ₂ in 10.00 dm ³ of solution. In this solution the magnesium hydroxide is fully dissociated into ions. | | | | | | Whic | ich one of the following is the concentration of Mg²+(aq) ions in the saturated so | lution? | | | | A | 2.82 × 10 ⁻² mol dm ⁻³ | | | | | В | 2.00 × 10 ⁻³ mol dm ⁻³ | | | | | С | 2.82 × 10 ⁻³ mol dm ⁻³ | | | | | D | 2.00 × 10 ⁻⁴ mol dm ⁻³ | (Total 1 mark) | | | Q5. | | (a) A sample of ethanol vapour, C₂H₅OH (<i>M_r</i> = 46.0), was maintained at a proof 100 kPa and at a temperature of 366K. (i) State the ideal gas equation. | ressure | | | | | (ii) Use the ideal gas equation to calculate the volume, in cm³, that 1.36 g ethanol vapour would occupy under these conditions. (The gas constant <i>R</i> = 8.31 J K⁻¹ mol⁻¹) | of | | | | | | (5) | |-----|------|---|-------------| | | | | (5) | | | | | | | (b) | Мас | nesium nitride reacts with water to form magnesium hydroxide and ammonia. | | | | (i) | Balance the equation, given below, for the reaction between magnesium nitride and water. | | | | | Mg_3N_2 + H_2O \rightarrow $Mg(OH)_2$ + NH_3 | | | | | | | | | (ii) | Calculate the number of moles, and hence the number of molecules, of NH ₃ in 0.263 g of ammonia gas. (The Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$) | (4) | | | | | (4) | | | | | | | (c) | | ium carbonate is manufactured in a two-stage process as shown by the ations below. | | | | | NaCl + NH $_3$ + CO $_2$ + H $_2$ O \rightarrow NaHCO $_3$ + NH $_4$ Cl | | | | | 2NaHCO₃ → Na₂CO₃ + H₂O + CO₂ | | | | | ulate the maximum mass of sodium carbonate which could be obtained from g of sodium chloride. | | | | | | | | | | | | | (4) (Total 13 marks) | |----------------------| | (+) | | /T-4-1 40 | | II Otal 13 marks |