M1.(a) (i) M1 0

M2 (+) 5
Accept Roman V for M2
(ii) $\mathrm{I}_{2}+10 \mathrm{H} \longrightarrow 2 \mathrm{HI}+10 \mathrm{~N}+4 \mathrm{H}$

Accept multiples
(b) M1 $1 \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{I}^{-} \longrightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

For M1, ignore state symbols
Credit multiples
Accept $21 / 2 l_{2}+1 / 2 l_{2}$ as alternative to $3 I_{2}$
Electrons must be cancelled
M2 $\mathrm{NaIO}_{3} \mathrm{OR}_{\mathrm{IO}}^{3}-\mathrm{OR}$ iodate ions OR iodate (V) ions etc.
For M2 Do not penalise an incorrect name for the correct oxidising agent that is written in addition to the formula.

Accept "the iodine in iodate ions" but NOT "iodine" alone
Accept "the iodine / I in iodate ions" but NOT "iodine" alone
(c) (i) lodine $\boldsymbol{O R} \mathrm{I}_{2}$

Insist on correct name or formula
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
$\mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$
Credit multiples
Do not penalise absence of charge on the electron
(d) hydrogen sulfide

OR $\mathrm{H}_{2} \mathrm{~S}$
OR hydrogen sulphide
$\underset{\text { (e) }}{\text { (e) }} \quad\left(\mathrm{iAg}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{AgI} \underset{\mathrm{Y}}{\mathrm{ONL}}\right.$

Ignore state symbols
No multiples
(ii) The (yellow) precipitate / solid / it does not dissolve / is insoluble ignore "nothing (happens)"

OR turns to a white solid
ignore "no observation"
OR stays the same
OR no (visible/ observable) change
$\mathbf{O R}$ no effect/no reaction
(iii) The silver nitrate is acidified to

- react with / remove (an)ions that would interfere with the test Ignore reference to "false positive"
- prevent the formation of other silver precipitates / insoluble silver compounds that would interfere with the test

Do not penalise an incorrect formula for an ion that is written in addition to the name.

- remove (other) ions that react with the silver nitrate
- react with / remove carbonate / hydroxide / sulfite (ions)

If only the formula of the ion is given, it must be correct
(f) (i) An electron donor

Penalise "electron pair donor"
OR (readily) donates / loses / releases / gives (away) electron(s)
Penalise "Ioss of electrons" alone
Accept "electron donator"
(ii) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$

Ignore state symbols
Do not penalise absence of charge on electron
Credit $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}-2 \mathrm{e}^{-}$
Credit multiples
1
(iii) For M1 and M2, iodide ions are stronger reducing agents than chloride ions, because

Ignore general statements about Group VII trends or about halogen molecules or atoms. Answers must be specific

M1 Relative size of ions

CE=0 for the clip if "iodine ions / chlorine ions" QoL
lodide ions / they are larger /have more electron levels(shells)(than chloride ions) / larger atomic / ionic radius
$C E=0$ for the clip if "iodide ions are bigger molecules / atoms"
QoL
OR electron to be lost/outer shell/level (of the iodide ion) is further the nucleus

OR iodide ion(s) / they have greater / more shielding
Insist on iodide ions in M1 and M2 or the use of it / they /
them, in the correct context (or chloride ions in the converse argument)

OR converse for chloride ion

M2 Strength of attraction for electron(s)

Must be comparative in both M1 and M2
The electron(s) lost /outer shell/level electron from (an) iodide ion(s) less strongly held by the nucleus compared with that lost from a chloride ion

OR converse for a chloride ion

M2. (a) (i) M1 (yellow precipitate is) silver iodide OR Agl (which may be awarded from the equation)
$\mathbf{M 2} \mathrm{Ag}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{Agl}$ (Also scores M1 unless contradicted)
M3 sodium chloride OR NaCl
For M2
Accept multiples
Ignore state symbols
Allow crossed out nitrate ions, but penalise if not crossed out
(ii) The silver nitrate is acidified to

- react with / remove ions that would interfere with the test
- prevent the formation of other silver precipitates / insoluble silver compounds that would interfere with the test
- remove (other) ions that react with the silver nitrate
- react with / remove carbonate / hydroxide / sulfite (ions)

Ignore reference to "false positive"
(iii) M1 and M2 in either order

M1 Fluoride (ion) ORF
M2 - Silver fluoride / AgF is soluble / dissolves (in water)

- no precipitate would form / no visible /observable change

Do not penalise the spelling "fluoride",
Penalise "fluride" once only
Mark M1 and M2 independently
(b) $\quad \mathrm{M} 1 \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2} \longrightarrow \mathrm{BaSO}_{4}$
(or the ions together)

M2 white precipitate / white solid / white suspension

M3 Barium meal or (internal) X-ray or to block X-rays
M4 BaSO_{4} / barium sulfate is insoluble (and therefore not toxic)
For M1, ignore state symbols
Allow crossed out sodium ions, but penalise if not crossed out
For M2, ignore "milky"
If BaSO_{3} OR BaS used in M1 and M4, penalise once only For M3 Ignore radio-tracing For M4 NOT barium ions

NOT barium
NOT barium meal NOT "It" unless clearly BaSO
(c) M1 $\underline{2(12.00000)}+\mathbf{4}(1.00794)=28.03176$

M2 Ethene and CO or "they" have an imprecise $\mathbf{M}_{\text {r }}$ of 28.0 / 28
OR
Ethene and CO or "they" have the same M. to one d.p.
OR
These may be shown by two clear, simple sums identifying both compounds

M3 $\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathbf{2 C O}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)
$$

M4 Displayed formula

M5 Type of polymer = $\underline{\text { Addition }}$ (polymer)

M1 must show working using 5 d.p.for hydrogen
Penalise "similar" or "close to", if this refers to the imprecise value in M 2 , since this does not mean "the same" For M3, accept $\mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{OR} \mathrm{CH} \mathrm{CH}_{2}$
For M4, all bonds must be drawn out including those on either side of the unit.
Penalise "sticks"
Ignore brackets around correct repeating unit but penalise " n "
Penalise "additional"

M3. (a) lodine has more electrons / iodine is bigger (atom or molecule) / iodine has bigger M_{r} / bigger surface area

Stronger / more van der Waals forces / vdw / London / temporarily induced dipole / dispersion forces between molecules

Stronger VdW intermolecular forces = M2
If stated VdW between atoms lose M2
(b) (i)

Mark is for 3 bp and 1 lp attached to N (irrespective of shape)

Mark is for 3 bp and 0 lp attached to B (irrespective of shape)
NHF_{2} shape - pyramidal / trigonal pyramidAccept tetrahedral / triangular pyramid
BF_{3} shape - trigonal planarNot triangular or triangular planar1
(ii) 107°
Allow 106-108 ${ }^{\circ}$1
(c) Hydrogen bondsAllow H-BondsNot just HydrogenApply list principle eg Hydrogen bonding and dipole-dipole =0
(d) Coordinate / dative covalent / dative

If covalent mark on
If ionic / metallic $C E=0$

Lone pair / both electrons/ 2 electrons on $\mathrm{N}\left(\mathrm{HF}_{2}\right)$ donated (to $\left.\mathrm{BF}_{3}\right)$
Direction of donation needed here
M4. (a) $\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{OR} \mathrm{Mg}(\mathrm{OH})_{2}$ Ignore name Could be ionic
(b) NaF or sodium fluoride

OR

NaCl or sodium chloride
Either formula or name can score
Do not penalise the spelling "fluoride"
When both formula and name are written,

- penalise contradictions
- if the attempt at the correct formula is incorrect, ignore it and credit correct name for the mark unless contradictory
- if the attempt at the correct name is incorrect, ignore it and credit correct formula for the mark unless contradictory
(c) NaClO OR NaOCl

Ignore name (even when incorrect)
The correct formula must be clearly identified if an equation is written
(d) $\mathrm{Br}_{2}(\mathrm{ONLY})$

Only the correct formula scores;
penalise lower case " b ", penalise upper case " R ", penalise superscript
Ignore name
The correct formula must be clearly identified if an equation is written
(e) M1 S OR S S_{8} OR S S_{2}

M2 I_{2} (ONLY)
Ignore names
penalise lower case " i " for iodine,
penalise superscripted numbers
Mark independently
The correct formula must be clearly identified in each case if an equation is written
(f) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
Structure of but-1-ene. Ignore name
Credit "sticks" for C-H bonds
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$Structure of butan-1-ol. Ignore nameCredit "sticks" for C-H bonds
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Structure of propane. Ignore name
Ignore calculations and molecular formula Credit "sticks" for C-H bonds
Ignore the molecular ion
(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ OR C $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}_{\text {t }}$

Structure of bromoethane.
Ignore name and structure of nitrile
Credit "sticks" for C-H bonds

