M1. (a) (i)

	The addition of AgNO_{3}	followed by concentrated	the addition of $\mathrm{NH}_{3}(\mathrm{aq})$
Observation with $\mathrm{NaBr}(\mathrm{aq})$	Cream or off white precipitate or solid (1)	drecipitate dissolves (1)	
Observation with $\mathrm{Nal}(\mathrm{aq})$	Yellow precipitate or solid (1)	Precipitate insoluble or no change (1)	

(ii) Ag F is soluble;
(b) (i) identity: $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3}$;
(ii) equation: $\mathrm{AgI}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}+\mathrm{I}^{-}$

1
(iii) use: in photography or as a fixer;
(c) (i) Structure

Observation: Vigorous or violent or exothermic reaction or fumes or white precipitate formed immediately
(ii) Structure:

Observation: No immediate precipiate or reaction
OR
white precipitate formed very slowly;
(d) (i) Silver-containing complex: $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{]}$;

Shape: Linear;
(ii) Structure

Explanation: Methanoic acid contains an aldehyde group;
(iii) $\mathrm{H}_{2} \mathrm{CO}_{3}$ or CO_{2} or $\mathrm{OC}(\mathrm{OH}) \mathrm{NH}_{2}$ or $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

OR
HCOONH_{4};

M2.D

M3. (a) Gains electrons (or removes electrons)
(b) (i) +4
$+6$
(ii) $\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$
(iii) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-}$
(iv) $\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Br}^{-}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
(c) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{HOCl}$
Chloride: -1
Chlorate(I): +1
(d) Chloride ions cannot reduce sulphuric acid
(Or chloride ions are weak reducing agents Or sulphuric acid is not a strong enough oxidising agent Or sulphuric acid is a weaker oxidising agent than chlorine)
(e) $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HCl}+\mathrm{KHSO}_{4}$
(Allow $2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HCl}+\mathrm{K}_{2} \mathrm{SO}_{4}$)
(f) (i) Bromine
(ii) Sulphur dioxide

