		The addition of AgNO₃(aq)	followed by	the addition of concentrated NH₃(aq)	
Observation NaBr(aq)	on with				
Observation	on with				
	(ii)			inguish between separa by the addition of silver r	
(b)	Wher	n aqueous sodium tl	hiosulphate is ac	ded to solid silver bromi	de a reaction
(b)	occur	s and a colourless s	solution is formed		
(b)		s and a colourless s	solution is formed		
(b)	occur	s and a colourless s	solution is formed ontaining specie	I .	

(3)

(c)	Aqueous silver nitrate can be used to distinguish between chloroethanoic acid and ethanoyl chloride.				
	(i)	Draw the structure of ethanoyl chloride. Predict what, if anything, you would observe when ethanoyl chloride is added to aqueous silver nitrate.			
		Structure of ethanoyl chloride			
		Observation			
	(ii)	Draw the structure of chloroethanoic acid. Predict what, if anything, you would observe when chloroethanoic acid is added to aqueous silver nitrate.			
		Structure of chloroethanoic acid			
		Observation			
			(4)		
(d)	(i)	Tollens' reagent is formed by the addition of aqueous ammonia to aqueous silver nitrate. Identify the silver-containing complex present in Tollens' reagent and state its shape.			

Silver-containing complex
Shape
Draw the structure of methanoic acid. By reference to this structure, suggest why a silver mirror is formed when this acid reacts with Tollens' reagent.
Structure
Explanation

(iii) Deduce the identity of a carbon-containing species formed when methanoic acid reacts with Tollens' reagent.

.....

(Total 17 marks)

Q2. Which one of the following reactions does not involve donation of an electron pair?

$$A \qquad H^{+} + CH_{3}NH_{2} \rightarrow CH_{3}NH_{3}$$

(ii)

$$\textbf{C} \qquad \text{CH}_3\text{CI} + \text{CN}^- \rightarrow \text{CH}_3\text{CN} + \text{CI}^-$$

D
$$\frac{1}{2}$$
Cl₂ + l⁻ \rightarrow Cl⁻ + $\frac{1}{2}$ l₂

(Total 1 mark)

Q3. Chlorine and bromine are both oxidising agents.

(a)	Define an <i>oxidising agent</i> in terms of electrons.			
			(1)	
(b)	In a	queous solution, bromine oxidises sulphur dioxide, SO_2 , to sulphate ions, SO_4^{2-}		
	(i)	Deduce the oxidation state of sulphur in SO_2^2 and in SO_4^{2-} SO_4^{2-}		
	(ii)	Deduce a half-equation for the reduction of bromine in aqueous solution.		
	(iii)	Deduce a half-equation for the oxidation of SO $_2$ in aqueous solution forming SO $_4^{2-}$ and H $^{+}$ ions.		
	(iv)	Use these two half-equations to construct an overall equation for the reaction between aqueous bromine and sulphur dioxide.	(5)	
(c)	chlo	e an equation for the reaction of chlorine with water. Below each of the rine-containing products in your equation, write the oxidation state of chlorine in product.		
			(3)	

			(2)
	(ii)	Give the reduction product formed from sulphuric acid.	
	(i)	Give the oxidation product formed from potassium bromide.	
(f)	Solid acid.	d potassium bromide undergoes a redox reaction with concentrated sulphuric	
			(1)
(e)		e an equation for the reaction between solid potassium chloride and entrated sulphuric acid.	
			(1)
(d)		e a reason why chlorine is not formed when solid potassium chloride reacts with centrated sulphuric acid.	