M1.(a) FeSO₄ + Na₂C₂O₄ \rightarrow FeC₂O₄ + Na₂SO₄

Allow multiples, including fractions.

Allow $Fe^{2+} + C_2O_4^{2-} \rightarrow FeC_2O_4$

Allow correct equation which includes water of crystallisation.

1

1

1

1

1

1

(b) M_r FeSO₄.7H₂O = 277.9

Allow if shown clearly in the calculation.

Allow 278

Moles = $6.95 / 277.9 = 2.5(0) \times 10^{-2}$

Do not penalise precision but must be to a minimum of two significant figures.

Allow correct calculation using incorrect M_r.

Correct answer without working scores this mark only.

- (c) $3(.00) \times 10^{-2}$
- (d) Theoretical mass = $2.50 \times 10^{-2} \times 179.8 = 4.50g$ as long as 2.50×10^{-2} is the smaller of parts (b) and (c) **(M1)**

Allow consequential answer from parts (b) and (c).

Allow theoretical mass = (smaller of parts (b) and (c)) \times 179.8

If larger of parts (b) and (c) used, lose M1 but can score M2.

Allow answers based on moles of reactant and product.

Yield = $3.31 \times 100 / 4.50 = 73.6\%$ (M2)

Award this mark only if answer given to 3 significant figures.

Correct answer without working scores this mark only, provided answer given to 3 significant figures.

Page 2

(e) Some left in solution / some lost during filtration

Do not allow 'incomplete reaction'.

Do not allow 'reaction is reversible'.

(f) MnO₄ will oxidise the iron(II) ion and the ethanedioate ion

 $MnO_4{}^{\scriptscriptstyle -}$ does not oxidise the $Cu^{\scriptscriptstyle 2^+}$ ion / larger volume needed for iron(II) ethanedioate

[9]

1

1

M2.(a) A ligand is an electron pair / lone pair donor

Allow uses lone / electron pair to form a co-ordinate bond

1

A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)

QoL

1

(b) CoCl₄²⁻ diagram

1

Tetrahedral shape

1

109°28'

1

Four chlorines attached to Co with net 2- charge correct Charge can be placed anywhere, eg on separate formula Penalise excess charges Allow 109° to 109.5°

$[Co(NH_3)_6]^{2+}$ diagram

1

Octahedral shape

1

90°

1

Six ammonia / NH₃ molecules attached to Co with 2+ charge correct

Allow 180° if shown clearly on diagram
CE= 0 if wrong complex but mark on if only charge is incorrect

(c) In different complexes the \underline{d} orbitals / \underline{d} electrons (of the cobalt) will have different energies / \underline{d} orbital splitting will be different

1

Light / energy is absorbed causing an electron to be excited

1

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected

1

(d) 1 mol of H_2O_2 oxidises 2 mol of Co^{2+} $Or H_2O_2 + 2Co^{2+} \rightarrow 2OH^- + 2Co^{3+}$

1

 $M_{\rm r}$ CoSO₄.7H₂O = 281

If M, wrong, max 3 for M1, M4, M5

Moles $Co^{2+} = 9.87 / 281 = 0.03512$

1

Moles $H_2O_2 = 0.03512 / 2 = 0.01756$

M4 is method mark for (M3) / 2 (also scores M1)

1

Volume H_2O_2 = (moles × 1000) / concentration = 0.01756 × 1000) / 5.00

 $= 3.51 \text{ cm}^3 / (3.51 \times 10^{-3} \text{ dm}^3)$

Units essential for answer

M5 is method mark for (M4) x 1000 / 5

Allow 3.4 to 3.6 cm3

If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 & M5

Note: Answer of 7 cm³ scores 3 for M2, M3, M5 (and any other wrong ratio max 3)

Answer of 16.8 cm³ scores 3 for M1, M4, M5 (and any other wrong M, max 3)

Answer of 33.5 cm³ scores 1 for M5 only (so wrong M, AND wrong ratio max 1)

[16]

1

M3.(a) Orange dichromate

Allow max 2 for three correct colours not identified to species but in correct order

1

Changes to purple / green / ruby / red-violet / violet Chromium(III) (Note green complex can be [Cr(H₂O)₅Cl]²⁺ etc)

Do not allow green with another colour

1

That changes further to blue Chromium(II)

Allow max 1 for two correct colours not identified but in correct order

So a <u>different</u> wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected

1

(d)
$$E O_2 (/ H_2O) > E Cr^{3+} (/ Cr^{2+}) / e.m.f = 1.67 V$$

 $Allow E(cell) = 1.67$

1

So Cr²⁺ ions are oxidised by oxygen/air

Allow any equation of the form:

$$Cr^{2+} + O_2 \rightarrow Cr^{3+}$$

1

With [Cr(H₂O)₆]²⁺ get CrCO₃

If named must be chromium(II) carbonate

1

with $[Cr(H_2O)_s]^{3+}$ get $Cr(H_2O)_s(OH)_s$ / $Cr(OH)_s$ Allow 0 to 3 waters in the complex

1

and CO₂

Can score M3, M4, M5 in equations even if unbalanced

1

Cr(III) differs from Cr(II) because it is acidic / forms H⁺ ions

1

1

because Cr3+ ion polarises water

Ignore charge/size ratio and mass/charge

[19]

M4. (a)	Co-ordinate / dative / dative covalent / dative co-ordinate Do not allow covalent alone		
	(b)	(lone) pair of electrons on oxygen/O If co-ordination to O², CE=0	
		forms co-ordinate bond with <u>Fe</u> / donates electron pair to <u>Fe</u> <i>'Pair of electrons on O donated to Fe ©scores M1 and M2</i> 1	
	(c)	180° / 180 / 90 Allow any angle between 85 and 95 Do not allow 120 or any other incorrect angle Ignore units eg °C	
	(d)	(i) 3:5/5 FeC ₂ O ₄ reacts with 3 MnO ₄ - Can be equation showing correct ratio	
		(ii) M1 Moles of MnO₄⁻ per titration = 22.35 × 0.0193/1000 = 4.31 × 10⁴ Method marks for each of the next steps (no arithmetic error allowed for M Allow 4.3 × 10⁴ (2 sig figs) Allow other ratios as follows: eg from given ratio of 7/3	2):

 $M2 = 7/3 \times 4.31 \times 10^{-4} = 1.006 \times 10^{-3}$

M2 moles of FeC₂O₄= ratio from (d)(i) used correctly \times 4.31 \times 10⁻⁴

```
M3 moles of FeC<sub>2</sub>O<sub>4</sub> in 250 cm<sup>3</sup> = M2 ans \times 10
        M3 = 1.006 \times 10^{-3} \times 10 = 1.006 \times 10^{-2}
                                                                                                        1
M4 Mass of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = M3 ans \times 179.8
        M4 = 1.006 \times 10^{-2} \times 179.8 = 1.81 g
                                                                                                        1
M5 % of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = (M4 ans/1.381) × 100
        M5 = 1.81 \times 100/1.381 = 131 \% (130 \text{ to } 132)
                                                                                                        1
(OR for M4 max moles of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = 1.381/179.8 (= 7.68 \times 10^{-3})
   for M5 % of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = (M3 ans/above M4ans) \times 100)
eg using correct ratio 5/3:
Moles of FeC<sub>2</sub>O<sub>4</sub> = 5/3 \times 4.31 \times 10^{-4} = 7.19 \times 10^{-4}
Moles of FeC<sub>2</sub>O<sub>4</sub> in 250 cm<sup>3</sup> = 7.19 \times 10^{-4} \times 10 = 7.19 \times 10^{-3}
Mass of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = 7.19 \times 10^{-3} \times 179.8 = 1.29 \text{ g}
% of FeC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O = 1.29 \times 100/1.381 = 93.4 (allow 92.4 to 94.4)
Note correct answer (92.4 to 94.4) scores 5 marks
        Allow consequentially on candidate's ratio
        eg M2 = 5/2 \times 4.31 \times 10^{-4} = 1.078 \times 10^{-3}
        M3 = 1.0078 \times 10^{-3} \times 10 = 1.078 \times 10^{-2}
        M4 = 1.078 \times 10^{-2} \times 179.8 = 1.94 g
        M5 = 1.94 \times 100/1.381 = 140 \% (139 \text{ to } 141)
        Other ratios give the following final % values
        1:1 gives 56.1% (55.6 to 56.6)
        5:1 gives 281% (278 to 284)
        5:4 gives 70.2% (69.2 to 71.2)
```

[10]