M1.(a) $\quad \mathrm{FeSO}_{4}+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Allow multiples, including fractions.
Allow $\mathrm{Fe}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{FeC}_{2} \mathrm{O}_{4}$
Allow correct equation which includes water of crystallisation.
(b) $\quad M_{\mathrm{r}} \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=277.9$

Allow if shown clearly in the calculation.
Allow 278
(c) $3(.00) \times 10^{-2}$
(d) Theoretical mass $=2.50 \times 10^{-2} \times 179.8=4.50 \mathrm{~g}$ as long as 2.50×10^{-2} is the smaller of parts (b) and (c) (M1)

Allow consequential answer from parts (b) and (c).
Allow theoretical mass $=($ smaller of parts (b) and $(c)) \times$ 179.8

If larger of parts (b) and (c) used, lose M1 but can score M2.
Allow answers based on moles of reactant and product.

Yield $=3.31 \times 100 / 4.50=73.6 \%(M 2)$
Award this mark only if answer given to 3 significant figures.
Correct answer without working scores this mark only, provided answer given to 3 significant figures.
(e) Some left in solution / some lost during filtration

Do not allow 'incomplete reaction'.
Do not allow 'reaction is reversible'.
(f) MnO_{4}^{-}will oxidise the iron(II) ion and the ethanedioate ion
MnO_{4}^{-}does not oxidise the Cu^{2+} ion / larger volume needed for iron(II) ethanedioate

M2.(a) A ligand is an electron pair / Ione pair donor
Allow uses lone / electron pair to form a co-ordinate bond

A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)

QoL
(b) $\mathrm{CoCl}_{4}{ }^{2-}$ diagram

Tetrahedral shape
$109^{\circ} 28^{\prime}$

Four chlorines attached to Co with net 2- charge correct
Charge can be placed anywhere, eg on separate formula Penalise excess charges
Allow 109° to 109.5°
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ diagram

Octahedral shape
90°

Six ammonia / NH_{3} molecules attached to Co with 2+ charge correct
Allow 180° if shown clearly on diagram
$C E=0$ if wrong complex but mark on if only charge is incorrect
(c) In different complexes the \underline{d} orbitals / d electrons (of the cobalt) will have different energies / d orbital splitting will be different

Light / energy is absorbed causing an electron to be excited

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected
(d) 1 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises 2 mol of Co^{2+}

$$
\mathrm{Or} \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+} \rightarrow 2 \mathrm{OH}^{-}+2 \mathrm{Co}^{3+}
$$

$M_{\mathrm{t}} \mathrm{CoSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=281$
If M_{r} wrong, max 3 for M1, M4, M5

```
Moles \(\mathrm{Co}^{2+}=9.87 / 281=0.03512\)
```

```
Moles \(\mathrm{H}_{2} \mathrm{O}_{2}=0.03512 / 2=0.01756\)
    M4 is method mark for (M3) / 2 (also scores M1)
```

M3.(a) Orange dichromate
Allow max 2 for three correct colours not identified to species but in correct order

Do not allow green with another colour

Allow max 1 for two correct colours not identified but in correct order
$\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2+}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}$

$$
2 \mathrm{Cr}^{3+}+\mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+\mathrm{Zn}^{2+} /
$$

Ignore any further reduction of Cr^{++}

$$
\begin{aligned}
& {\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2+}+14 \mathrm{H}^{+}+4 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+4 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}} \\
& \quad \text { Ignore additional steps e.g. formation of } \mathrm{CrO}_{4}^{2 .}
\end{aligned}
$$

(b) Green precipitate
(Dissolves to form a) green solution
Solution can be implied if 'dissolves stated
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}$
Penalise $\mathrm{Cr}(\mathrm{OH})_{3}$ once only
$\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3}+3 \mathrm{H}_{2} \mathrm{O}$
Allow $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{e}\right]^{3+}+6 \mathrm{H}_{2} \mathrm{O}$
Allow formation of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}\right]^{2}$ in balanced equations
Ignore state symbols, mark independently
(c) (ligand) substitution / replacement / exchange

Allow nucleophilic substitution

The energy levels/gaps of the d electrons are different (for each complex)
Ignore any reference to emission of light

So a different wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected
(d) $E \mathrm{O}_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)>E \mathrm{Cr}^{3+}\left(/ \mathrm{Cr}^{2+}\right) /$ e.m.f $=1.67 \mathrm{~V}$

Allow E(cell) $=1.67$

So Cr^{2+} ions are oxidised by oxygen/air
Allow any equation of the form:

$$
\mathrm{Cr}^{2+}+\mathrm{O}_{2} \rightarrow \mathrm{Cr}^{3+}
$$

With $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ get CrCO_{3}
If named must be chromium(II) carbonate
with $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ get $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} / \mathrm{Cr}(\mathrm{OH})_{3}$
Allow 0 to 3 waters in the complex
and CO_{2}
Can score M3, M4, M5 in equations even if unbalanced
$\mathrm{Cr}(\mathrm{III})$ differs from $\mathrm{Cr}(\mathrm{II})$ because it is acidic / forms H^{+}ions
because Cr^{3+} ion polarises water
Ignore charge/size ratio and mass/charge

M4.(a) Co-ordinate / dative / dative covalent / dative co-ordinate
Do not allow covalent alone
(b) (lone) pair of electrons on oxygen/O

If co-ordination to $\mathrm{O}^{2}, \mathrm{CE}=0$
forms co-ordinate bond with $\underline{\mathrm{Fe} / \text { donates electron pair to } \underline{\mathrm{Fe}}, ~(\mathrm{l}}$
'Pair of electrons on O donated to Fe scores M1 and M2
(c) $180^{\circ} / 180 / 90$

Allow any angle between 85 and 95
Do not allow 120 or any other incorrect angle Ignore units eg ${ }^{\circ} \mathrm{C}$
(d) (i) $3: 5 / 5 \mathrm{FeC}_{2} \mathrm{O}_{4}$ reacts with $3 \mathrm{MnO}_{4}^{-}$

Can be equation showing correct ratio
(ii) M1 Moles of MnO_{4}^{-}- per titration $=22.35 \times 0.0193 / 1000=\underline{4.31 \times 10^{-4}}$ Method marks for each of the next steps (no arithmetic error allowed for M2):

Allow 4.3×10^{-4} (2 sig figs)
Allow other ratios as follows:
eg from given ratio of $7 / 3$

M2 moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}=$ ratio from (d)(i) used correctly $\times 4.31 \times 10^{-4}$ M2 $=7 / 3 \times 4.31 \times 10^{-4}=1.006 \times 10^{-3}$

M3 moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in $250 \mathrm{~cm}^{3}=\mathrm{M} 2$ ans $\times 10$

$$
\text { M3 }=1.006 \times 10^{-3} \times 10=1.006 \times 10^{-2}
$$

```
M4 Mass of FeC2O. 2H 2H2O=M3 ans }\times179.
    M4 = 1.006 * 10-2 }\times179.8=1.81 
```

M5 \% of $\mathrm{FeC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(\mathrm{M} 4$ ans $/ 1.381) \times 100$
M5 $=1.81 \times 100 / 1.381=131 \%(130$ to 132)
(OR for M4 max moles of $\mathrm{FeC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=1.381 / 179.8\left(=7.68 \times 10^{-3}\right.$) for $\mathrm{M} 5 \%$ of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=(\mathrm{M} 3$ ans/above M4ans $\left.) \times 100\right)$
eg using correct ratio $5 / 3$:
Moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}=5 / 3 \times 4.31 \times 10^{-4}=7.19 \times 10^{-4}$
Moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in $250 \mathrm{~cm}^{3}=7.19 \times 10^{-4} \times 10=7.19 \times 10^{-3}$
Mass of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=7.19 \times 10^{-3} \times 179.8=1.29 \mathrm{~g}$
$\%$ of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=1.29 \times 100 / 1.381=93.4$ (allow 92.4 to 94.4)
Note correct answer (92.4 to 94.4) scores 5 marks
Allow consequentially on candidate's ratio
eg M2 $=5 / 2 \times 4.31 \times 10^{-4}=1.078 \times 10^{-3}$
M3 $=1.0078 \times 10^{-3} \times 10=1.078 \times 10^{-2}$
M4 $=1.078 \times 10^{-2} \times 179.8=1.94 \mathrm{~g}$
M5 $=1.94 \times 100 / 1.381=140 \%$ (139 to 141)
Other ratios give the following final \% values
1:1 gives 56.1\% (55.6 to 56.6)
5:1 gives 281\% (278 to 284)
5:4 gives 70.2\% (69.2 to 71.2)

