M1. (a)	To reduce any Fe³+ ions to Fe²+ ions						
	Allow 'to ensure that all of the iron present is in the form of Fe ²⁺ ions' or 'to ensure that no Fe ³⁺ ions are present'.	1					
(b)	Zinc would react with MnO ₄ - / Fe ³⁺ produced in titration Do not allow 'would increase titre value'. Do not allow 'zinc would react' without further qualification.	1 [2]					
M2 .(a)	(i) Flask with side arm	1					
	Buchner funnel <u>and</u> horizontal filter paper Allow Hirsch funnel and horizontal filter paper. Do not allow standard Y-shaped funnel. If there is not a clear air-tight seal (labelled or drawn) between the funnel and the flask maximum 1 mark.	1					
	(ii) $M_r \text{ KMnO}_4 = 158(.0)$	1					
	Mass = 0.225 × 158 / 3 = 11.9 (g) Lose M2 if no working shown. Allow consequential mark on an incorrect M, for KMnO₄	1					

1

Precision mark: three significant figures *Allow if mass incorrect.*

		Ignore smell.	1
	(b)	Difficult to see meniscus / line on graduated flask Do not allow reference to over filling.	1
M3. (a)	2MnO₄¯	+ 16H ⁺ + 5C₂O₄²- → 2Mn²+ + 8H₂O + 10CO₂ For all species correct / moles and species correct but charge incorrect	1
		For balanced equation including all charges (also scores first mark)	1
	(b)	Manganate(VII) ions are coloured (purple)	1
		All other reactants and products are not coloured (or too faintly coloured to <i>Allow (all) other species are colourless</i> Allow Mn²+ are colourless / becomes colourless / pale pink	detect)
	(c)	The catalyst for the reaction is a reaction product	1
		Reaction starts off slowly / gradient shallow	1
		Then gets faster/rate increases / gradient increases	

[7]

(iii) (Unpleasant) taste

Allow concentration of MnO₄ decreases faster / falls rapidly

(d) Mn²⁺ ions

Allow Mn³⁺ ions

1

(e) $MnO_4^- + 8H^+ + 4Mn^{2+} \rightarrow 5Mn^{3+} + 4H_2O$ Allow multiples

1

1

$$2Mn^{\scriptscriptstyle 3+} + C_{\scriptscriptstyle 2}O_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2-} \longrightarrow \, 2Mn^{\scriptscriptstyle 2+} + 2CO_{\scriptscriptstyle 2}$$

[10]

M4.(a) Stop the formation of MnO₂ / Ensures all MnO₄⁻ reacts to form Mn²⁺ / becomes colourless

1

(b) Weak acid / Does not supply sufficient H⁺

1

1

(c) It is self-indicating / Purple to colourless end-point or vice versa

If colours mentioned they must be correct.

[3]

M5.(a) Manganate would oxidise / react with Cl⁻

1

Because E° for MnO₄⁻ is more positive than that for Cl² / 1.51 – 1.36 = +0.15 (V)

Muct	refer	to da	ta fron	n the t	tahle	for M2
เงเนอเ	10101	u ua	ıa IIVII	,,,,,,	auic	IUI IVI/

(b) Moles of H⁺ = $25 \times 0.0200 \times 8 / 1000 = 4.00 \times 10^{-3}$

1

1

Moles of
$$H_2SO_4 = 2.00 \times 10^{-3} (4.00 \times 10^{-3} / 2)$$

Allow consequential marking on incorrect moles of H⁺

1

Volume $H_2SO_4 = 4.00 \text{ (cm}^3) (2.00 \times 10^{-3} \times 1000 / 0.500)$

Allow consequential marking on incorrect moles of H₂SO₄

Accept 4 cm³.

8 cm³ scores 2 marks.

Do not penalise precision.

Correct answer without working scores M3 only.

1

(c) (i) $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$

Allow multiples, including fractions.

Ignore state symbols.

1

(ii) Can't see end point due to brown colour

1

Larger titre (than expected)

Allow the idea that with two reactions can't make use of titre in calculations.

Do not allow 'an inaccurate result' without qualification.

1

1

(d) Solution (very) dilute / lots of water

[9]

M6.(a)For reactions 1 to 3 must show complex ions as reactants and products Take care to look for possible identification on flow chart

Reaction 1

ammonia solution

1

W is [Co(NH₃)₆]²⁺

1

$$\begin{split} [\text{Co}(\text{H}_2\text{O})_6]^{2^+} + 6\text{NH}_3 &\rightarrow [\text{Co}(\text{NH}_3)_6]^{2^+} + 6\text{H}_2\text{O} \\ \textit{Correct equation scores all 3 marks} \end{split}$$

1

Reaction 2

Allow oxygen, Do not allow air

 H_2O_2

1

$$\mathbf{X}$$
 is $[Co(NH_3)_6]^{3+}$

1

$$2[Co(NH_3)_6]^{2^+} + H_2O_2 \rightarrow 2[Co(NH_3)_6]^{3^+} + 2OH^-$$
Allow $2[Co(NH_3)_6]^{2^+} + \frac{1}{2}O_2 + H_2O \rightarrow 2[Co(NH_3)_6]^{3^+} + 2OH^-$
Correct equations score all 3 marks

1

Reaction 3

HCI

Do not allow CI but mark on

1

 \mathbf{Y} is $[CoCl_4]^2$

$$[Co(H_2O)_{\epsilon}]^{2*} + 4CI^{-} \rightarrow [CoCI_4]^{2*} + 6H_2O/$$
Correct equation scores previous mark

$$\begin{split} [\text{Co}(\text{H}_2\text{O})_6]^{2^+} + 4\text{HCI} &\rightarrow [\text{CoCI}_4]^{2^-} + 6\text{H}_2\text{O} + 4\text{H}, \\ \textit{This equation scores all three marks} \end{split}$$

1

Reaction 4

Na₂CO₃ Or NaOH/NH₃

Do not allow CaCO₃ as a reagent but mark on

1

Z is
$$CoCO_3$$
 $Co(OH)_2/Co(H_2O)_4(OH)_2$

1

$$\begin{split} [\text{Co}(\text{H}_2\text{O})_6]^{2^*} + \text{CO}_3^{2^*} \rightarrow \text{CoCO}_3 + 6\text{H}_2\text{O} & [\text{Co}(\text{H}_2\text{O})_6]^{2^*} + 2\text{OH}^- \rightarrow \\ & \text{Co}(\text{H}_2\text{O})_4(\text{OH})_2 + 2\text{H}_2\text{O} \text{ etc} \end{split}$$

Allow waters to stay co-ordinated to Co. This mark also previous mark

Or
$$[Co(H_2O)_6]^{2+}$$
 + Na₂CO₃ \rightarrow CoCO₃ + 6H₂O + 2Na⁺
Allow Co²⁺ + CO₃²⁻ \rightarrow CoCO₃

1

(b)
$$SO_3^2 + \frac{1}{2}O_2 \rightarrow SO_4^2$$
Allow multiples

1

The activation energy is lower (for the catalysed route)

Or Co³⁺ attracts SO₃²/Co²⁺ attracts SO₃²/oppositely charged ions attract

1

$$\frac{1}{2}O_{2} + 2Co^{2+} + 2H^{+} \rightarrow H_{2}O + 2Co^{3+}$$

1

$$2\text{Co}^{_{3^{+}}}$$
 + $\text{SO}_{_{3}^{^{2}}}$ + $\text{H}_{_{2}}\text{O}$ \rightarrow $2\text{Co}^{_{2^{+}}}$ + $\text{SO}_{_{4}^{^{2^{-}}}}$ + $2\text{H}^{_{+}}$

Allow these equations in either order

[16]

1