M1. (a)	HCO ₃	$= CO_3^{2^-} + H^+$		
		or		
		$H_2O + HCO_3^- = CO_3^{2-} + H_3O^+$ Must have equilibrium sign but mark on to (b) Ignore state symbols	1	
	(b)	Acid: Increase in concentration of H^+ ions, equilibrium moves to the left. Allow H^+ ions react with carbonate ions (to form HCO_3^-)	1	
		Alkali: OH⁻ reacts with H⁺ ions, equilibrium moves to the right (to replace the H⁺ ions)	1	
		Concentration of H ⁺ remains (almost) constant	1	[4]
M	2. (a)	Burette	1	
		Because it can deliver variable volumes	1	
	(b)	The change in pH is gradual / not rapid at the end point	1	
		An indicator would change colour over a range of volumes of sodium hydroxide		

Allow indicator would not change colour rapidly / with a few drops of NaOH

(c) $[H^+] = 10^{-pH} = 1.58 \times 10^{-12}$ 1 $K_{\text{w}} = [H^{+}] [OH^{-}] \text{ therefore } [OH^{-}] = K_{\text{w}} / [H^{+}]$ 1 Therefore, $[OH^{-}] = 1 \times 10^{-14} / 1.58 \times 10^{-12} = 6.33 \times 10^{-3} \text{ (mol dm}^{-3)}$ Allow $6.31-6.33 \times 10^{-3}$ (mol dm⁻³) 1 (d) At this point, $[NH_3] = [H^+]$ $= [H^{\dagger}]^2$ $[NH_4^{\dagger}]$ Therefore K_a 1 $[H^+] = 10^{-4.6} = 2.51 \times 10^{-5}$ 1 $K_a = (2.51 \times 10^{-5})^2 / 2 = 3.15 \times 10^{-10} \text{ (mol dm}^{-3})$ Allow $3.15 - 3.16 \times 10^{-10}$ (mol dm⁻³) 1 (e) When $[NH_3] = [NH_4^+]$, $K_a = [H^+]$ therefore $-\log K_a = -\log [H^+]$ Answer using alternative value 1 Therefore pH = $-\log_{10}(3.15 \times 10^{-10}) = 9.50$ $M2 pH = -log_{10}(4.75 \times 10^{-9}) = 8.32$ Allow consequential marking based on answer from part (d) [12]

M3.(a) Proton donor or H⁺ donor

(b) (i)
$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$
 or $\frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$

If K_a wrong, can only score M1 below.

Must be ethanoic acid not HA

Must have square brackets (penalise here only) but mark on in (b)(ii).

1

1

1

1

1

1

(ii) M1 [H⁺] =
$$10^{-2.69}$$
 OR 2.042×10^{-3} (mol dm⁻³)

M2
$$CH_3COOH] = \frac{[H^+]^2}{K_a}$$

Ignore ()

Mark for correctly rearranged expression incl [H⁺]²

М3

$$=\frac{(2.042\times10^{-3})^2}{1.75\times10^{-5}}$$

If M2 wrong no further marks.

$$M4 = 0.238 \text{ (mol dm}^{-3}\text{)} \text{ Allow } 0.229 - 0.24$$

(ii) M1 Cl is (more electronegative so) withdraws electrons *OR* negative inductive effect of Cl

Ignore electronegativity.

Ignore chloroethanoic acid has a lower K_s value.

1

M2 Weakens O-H bond

OR O–H bond is more polar

OR reduces negative charge on COO-

OR stabilizes COO- (more)

M1 & M2 are independent marks.

Ignore H⁺ lost more easily.

1

(d) (i) **A**

1

(ii) C

1

(iii) D

1

(e) M1 Mol NaOH = mol OH⁻ = $(19.6 \times 10^{-3}) \times 0.720 = 1.41(1) \times 10^{-2}$ Mark for answer.

1

M2 Mol H₂SO₄ = $(26.4 \times 10^{-3}) \times 0.550 = 1.45(2) \times 10^{-2}$ Mark for answer.

1

M3 Mol H⁺ added = $2 \times (1.452 \times 10^{-2}) = 2.90(4) \times 10^{-2}$

XS mol $H_2SO_4 = 7.46(4) \times 10^{-3}$

If factor \times 2 missed completely (pH = 2.05) or used wrongly later,

can score max 4 for M1, M2, M5 & M6

1

M4 XS mol H^+ = 0.0149(3)

```
M5 For dividing by volume [H^+] = 0.0149(3) \times (1000 / 46.0) = 0.324 - 0.325 \text{ mol dm}^{-3}

If no use or wrong use of volume lose M5 and M6 ie can score 4 for pH = 1.83 (no use of vol)
```

M6 pH = 0.49

2dp (penalise more or less). If × 2 missed & vol not used, pH = 3.39 scores M1 & M2 only.

Treat missing 1000 as AE(-1) & score 5 for pH = 3.49

[18]

1

M4.(a) (only) slightly or partially dissociated / ionised

Ignore 'not fully dissociated'.

Allow low tendency to dissociate or to lose / donate a proton.

Allow shown equilibrium well to the left.

Otherwise ignore equations.

1

(b) $2CH_3CH_2COOH + Na_2CO_3 \longrightarrow 2CH_3CH_2COONa + H_2O + CO_2$

OR

 $2CH_3CH_2COOH + CO_3^2 \longrightarrow 2CH_3CH_2COO^- + H_2O + CO_2$

OR

CH₃CH₂COOH + Na₂CO₃ ---> CH₃CH₂COONa + NaHCO₃

OR

CH₃CH₂COOH + CO₃²⁻ --- CH₃CH₂COO⁻ + HCO₃⁻

Must be propanoic acid, allow C₂H₅COOH.

Not molecular formulae.

Allow multiples.

Ignore reversible sign.

Not H₂CO₃.

(c)
$$[OH^{-}] = 2 \times 0.0120 = 0.0240$$
 M1

Correct answer for pH with or without working scores 3.

 $[H^+] = \frac{1 \times 10^{-14}}{0.0240} = 4.166 \times 10^{-13} \, OR \, pOH = 1.62 \, M2$

If \times 2 missed or used wrongly can only score M3 for correct calculation of pH from their [H $^{+}$].

1

1

1

1

1

Lose M3 if not 2 decimal places: 12.4 scores 2. 12.08 scores 1 (missing × 2); 12.1 scores 0. 11.78 scores 1 (dividing by 2) 11.8 scores 0.

(d) (i)
$$K_a = \frac{[H^+][C_6H_5COO^-]}{[C_6H_5COOH]}$$

Ignore () here but brackets must be present. Must be correct acid and salt. If wrong, mark part (ii) independently.

(ii) M1
$$K^a = \frac{[H^+]^2}{[C_6H_5COOH]}$$
 OR with numbers

Correct answer for pH with or without working scores 3. Allow HX, HA and ignore () here.

May score M1 in part (i).

M2
$$[H^+] = \sqrt{(6.31 \times 10^{-5} \times 0.0120)}$$
 or $\sqrt{(K_a \times [C_6H_5COOH])}$
 $(= \sqrt{(7.572 \times 10^{-7} = 8.70 \times 10^{-4})}$

pH = 6.12 may score 2 if correct working shown and they show the square root but fail to take it.

Page 7

But if no working shown or wrong
$$K^a = \frac{[H^+]}{[C_6 H_5 COOH]}$$

1

1

1

1

1

1

1

used which also leads to 6.12, then zero scored.

M3
$$pH = 3.\underline{06}$$

Must be 2 decimal places ie 3.1 loses M3.

(iii) M1 $[H^+] = 10^{-4.00} = 1.00 \times 10^{-4}$ Correct answer for mass with or without working scores 5. Allow 1×10^{-4} .

M2
$$[X^-] = \frac{\text{Ka x } [HX]}{[H^+]}$$

Ignore () here. If $[HX] / [X^-]$ upside down, can score M1 plus M4 for 5.26×10^{-7} .

$$M3 = \frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$$

And M5 for 7.57 × 10⁻⁵ g.

M4 =
$$7.572 \times 10^{-3}$$

M5 Mass (
$$C_6H_5COONa$$
) = 7.572 × 10⁻³ × 144 =1.09 g or 1.1 g

Wrong method, eg using [H⁺]² may only score M1 and M5 for correct multiplication of their M4 by 144 (provided not of obviously wrong substance).

(e) M1 CO₂

Allow NOx and SO2.

1

M2 pH (It) falls / decreases

If M1 wrong, no further marks.

1

M3 mark M2 & M3 independently

acidic (gas)

OR reacts with alkali(ne solution) / OH⁻

$$\textbf{OR} \ \mathsf{CO_2} + 2\mathsf{OH^-} \longrightarrow \ \mathsf{CO_3^{2^-}} + \mathsf{H_2O}$$

OR CO₂ + OH⁻ ---> HCO₃⁻

Not forms H₂CO₃ H₂SO₃ H₂SO₄ etc OR H⁺ ions.

[17]

M5.C

[1]