M1.(a) (i) [H⁺][OH⁻] **OR** [H₃O⁺][OH⁻] Ignore (aq) Must have [] not ()

1

(ii) $\sqrt{3.46 \times 10^{-14}}$ (= 1.86 × 10⁻⁷)

If no square root, CE=0

1

pH = 6.73 *Must be 2dp*

1

(iii) $[H^+] = 10^{-11.36} (= 4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12})$ Mark for working

1

 $Kw = [4.365 \times 10^{-12} \ \textit{OR} \ 4.37 \times 10^{-12} \times 0.047] = 2.05 \times 10^{-13}$ $Allow \ 2.05 \times 10^{-13} - 2.1 \times 10^{-13}$ $Mark \ for \ answer$ $Ignore \ units$

1

- (b) (i) HCOOH HCOO- + H
 Must have but ignore brackets.
 - OR HCOOH + H₂O HCOO⁻ + H₃O⁺

 Allow HCO₂⁻ or CHOO⁻ ie minus must be on oxygen, so penalise COOH⁻
- 1

(ii) $K_a = \frac{\left[H^+\right]\left[HCOO^-\right]}{HCOOH}$ OR $\frac{\left[H_3O^+\right]\left[HCOO^-\right]}{HCOOH}$

Must be HCOOH etc. Allow ecf in formulae from (b)(i) 1 (iii) M1 $K_a = \frac{\left[H^+\right]^2}{\left[HCOOH\right]} \left(\left[H^+\right]^2 = 1.78 \times 10^{-4} \times 0.056 = 9.97 \times 10^{-8}\right)$ Allow HA or HX etc. Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1 1 M2 $[H^+] = 3.16 \times 10^{-3}$ Mark for answer 1 M3 pH = 2.50allow more than 2 dp but not fewer Allow correct pH from their wrong [H*] here only If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3 1 (iv) M1 Decrease Mark M1 independently 1 Eqm shifts / moves to RHS **OR** more H⁺ **OR** K_a increases **OR** more dissociation 1 M3 To reduce temperature or oppose increase / change in temperature Only award M3 following correct M2 1

Must have all brackets but allow ()

(c) (i) M1
$$[H^+] = \frac{\text{Ka x } [HX]}{[X^-]}$$
 OR $pH = pK_a - log \frac{[HX]}{[X^-]}$

If [HX]/[X] upside down, no marks

M2
$$\frac{1.78 \times 10^{-4} \times 2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$$
 OR pH = 3.75 -log
$$\frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$$
 (= 2.27 × 10⁻⁴)

1

1

1

1

1

M3 pH = 3.64 allow more than 2 dp but not fewer pH calc NOT allowed from their wrong [H⁺] here

- (ii) M1 Mol H⁺ added = 5.00×10^{-4} Mark on from AE in moles of HCl (eg 5×10^{-3} gives pH = 3.42 scores 3)
 - M2 Mol HCOOH = 2.40×10^{-2} and Mol HCOO⁻ = 1.79×10^{-2} If either wrong no further marks except AE (-1) OR if ECF in mol acid and / or mol salt from (c)(i), can score all 4

M3
$$[H^{+}] \left(= \frac{\text{Ka x } [XH]}{[X^{-}]} \right) = \frac{1.78 \times 10^{-4} \text{ x } .2.40 \times 10^{-2}}{1.79 \times 10^{-2}} \left(= 2.39 \times 10^{-4} \right)$$

If [HX]/[X] upside down here after correct expression in (c)(i), no further marks

OR pH = 3.75
$$-\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}$$

If [HX]/[X] upside down here and is repeat error from (c)(i), max 3 (pH = 3.88 after 3.86 in (c)(i))

[20]

M2.(a) Proton donor or H⁺ donor

Allow donator

1

(b) (i) B B

Both need to be correct to score the mark

1

(ii) A A

Both need to be correct to score the mark

1

(iii) B A

Both need to be correct to score the mark

1

(c) **M1** $[H^+] = 10^{-1.25} \text{ OR } 0.05623$

1

M2 mol HCl = $(25 \times 10^{-3}) \times 0.0850$ (= 2.125×10^{-3}) *Mark for Working*

M3 vol
$$\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right) = 0.0378 \text{ dm}^3 \text{ or } 37.8 \text{ cm}^3$$

allow 0.0375 – 0.038 dm³ or 37.5 – 38 cm³

Units and answer tied

Lose M3 if total given as (25 + 37.8) = 62.8 cm³

Ignore "vol added = 12.8 cm³ " after correct answer

1

Must be 2dp

1

(ii)
$$K_a = \frac{\begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} H^- \end{bmatrix}}{\begin{bmatrix} HX \end{bmatrix}}$$
 ignore = $\frac{\begin{bmatrix} H^+ \end{bmatrix}^2}{\begin{bmatrix} HX \end{bmatrix}}$ but this may score M1 in (d)(iii) Must have all brackets but allow () Allow HA etc

1

(iii) M1
$$K_a = \frac{[H^+]^2}{[HX]}$$
 or with numbers
Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1

NO mark for 10-PKa

1

M2 [H⁺] =
$$(\sqrt{(3.01 \times 10^{-5} \times 0.174)} = \sqrt{(5.24 \times 10^{-6})})$$

= 2.29 ×10⁻³ - 2.3 ×10⁻³
Mark for answer

.

1

(e) **M1** mol OH⁻ =
$$(10.0 \times 10^{-3}) \times 0.125 = 1.25 \times 10^{-3}$$

Mark for answer

M2 orig mol HX = $(15.0 \times 10^{-3}) \times 0.174 = 2.61 \times 10^{+3}$ *Mark for answer*

1

M3 mol HX in buffer = orig mol HX – mol OH-Mark for answer

=
$$2.61 \times 10^{-3} - 1.25 \times 10^{-3} = 1.36 \times 10^{-3}$$

Allow conseq on their (M2 – M1)

([HX] =
$$1.36 \times 10^{-3}/25 \times 10^{-3} = 0.0544$$
)

If no subtraction, max 3 for M1, M2 & M4 (pH = 4.20)

If [H⁺] = [X⁻] & $\sqrt{\text{used}}$, max 3 for M1, M2 & M3 (pH = 2.89)

1

M4 mol X⁻ in buffer = mol OH⁻ = 1.25×10^{-3}

$$([X^{-}] = 1.25 \times 10^{-3}/25 \times 10^{-3} = 0.05)$$

May be scored in M5 expression

1

M5 [H·]
$$(=\frac{Ka \times [HX]}{[X^-]})$$

If use $K_o = \frac{[H^+]^2}{[HX]}$ no further marks

$$= \frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} OR \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}$$

 $(= 3.27 \times 10^{-5})$

If either value of HX or X- used wrongly or expression upside down, no further marks

1

M6 pH = 4.48 or 4.49 (allow more than 2dp but not fewer)

Do **not** allow M6 for correct calculation of pH using their [H⁺]

- this only applies in (d)(iii) - apart from earlier AE

[18]

M3.(a) Any **two** from:

Weigh by difference or rinse weighing bottle and add to beaker

Rinse beaker and add washings to graduated flask

Invert flask several times to ensure uniform solution

Use a funnel to transfer to the flask and rinse the funnel

Use a stirrer to prepare the solution <u>and</u> rinse the stirrer *If more than two answers apply the list rule.*

Max 2

(b) $K_a = [H^+]^2 / [HA]$

Allow any correct expression relating K₃, [H⁺] and [HA]

1

[HA] = $(10^{-2.50})^2 / 1.07 \times 10^{-3}$

M2 also scores M1

1

 $= 9.35 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$

Do not allow 9.4 (answer is 9.346).

Correct answer only scores 1 mark.

Do not penalise precision but must be to at least two significant figures.

1

(c) (b) \times 138.0 / 4

1

= 0.322

Using 8.50×10^{-3} gives 0.293

Correct answer scores M1 and M2.

Do not penalise precision but must be to at least two significant figures.

(d) (c) × 100 / 0.500 = 64.5% Using 0.293 from (c) gives 58.7% Using 0.347 gives 69.4% Do not penalise precision.

[8]