Q1. ln t	this	quest	ion, give all values of pH to 2 decimal places.					
(a)	The ionic product of water has the symbol $K_{\scriptscriptstyle \!$						
		(i)	Write an expression for the ionic product of water.					
				(1				
		(ii)	At 42°C, the value of K_w is 3.46 × 10 ⁻¹⁴ mol ² dm ⁻⁶ .					
			Calculate the pH of pure water at this temperature.					
				(2				
		(iii)	At 75 °C, a 0.0470 mol dm ⁻³ solution of sodium hydroxide has a pH of 11.36. Calculate a value for $K_{\rm w}$ at this temperature.					
				(2				
(b)	Methanoic acid (HCOOH) dissociates slightly in aqueous solution.						
		(i)	Write an equation for this dissociation.					
				(1				
		(ii)	Write an expression for the acid dissociation constant K_a for methanoic acid.					

		(1)
(iii)	The value of K_a for methanoic acid is 1.78 × 10 ⁻⁴ mol dm ⁻³ at 25 °C. Calculate the pH of a 0.0560 mol dm ⁻³ solution of methanoic acid.	
		(3)
(iv)	The dissociation of methanoic acid in aqueous solution is endothermic.	
	Deduce whether the pH of a solution of methanoic acid will increase, decrease or stay the same if the solution is heated. Explain your answer.	
	Effect on pH	
	Explanation	
	(Extra space)	
		(3)
Th.	walva of K for worth on signarial is 4.70 v. 40-4 and I durat at 20°0	
A bu	e value of K_a for methanoic acid is 1.78 × 10 ⁻⁴ mol dm ⁻³ at 25°C. uffer solution is prepared containing 2.35 × 10 ⁻² mol of methanoic acid and 1.84 0^{-2} mol of sodium methanoate in 1.00 dm ³ of solution.	
(i)	Calculate the pH of this buffer solution at 25°C.	

(c)

	(Extra space)	
(ii)	A 5.00 cm ³ sample of 0.100 mol dm ⁻³ hydrochloric acid is added to the solution in part (c)(i).	e buffer
	Calculate the pH of the buffer solution after this addition.	
	(Extra space)	
		 (Total 20 m
uestic	on is about several Brønsted–Lowry acids and bases.	
Def	ine the term <i>Brønsted–Lowry</i> acid.	

Q2.This

	substand Brønsted	ce immed d–Lowry	diately abo base (B) b	ve the boy y writing <i>i</i>	x is acting as A or B in each	a Brønst ı of the si	ed–Lowry acid (A) or a ix boxes.	
(i) CH₃C0	ООН	+	H₂O	=	CH.COO-	+	H₃O⁺	(1)
(ii) CH₃ľ	NH_2	+	H₂O	=	CH ₀ NH ₀ +	+	OH-	
								(1)
(iii) H	INO ₃	+	H₂SO₄	=	H _a NO _a -	+	HSO₄ -	
								(1)
(c)	Distilled	water wa	as added u	ntil the ph	⊸ hydrochloric I of the solutic tion formed. S	n was 1.		
	(Extra sp	oace)						

Three equilibria are shown below. For each reaction, indicate whether the

(b)

At 2	98 K, the value of the acid dissociation constant (K_s) for the weak acid HX in
que	eous solution is 3.01 × 10 ⁻⁵ mol dm ⁻³ .
i)	Calculate the value of pK_a for HX at this temperature. Give your answer to 2 decimal places.
;;\	Write an expression for the acid dissociation constant (K_a) for the weak acid
(ii)	HX.
(iii)	Calculate the pH of a 0.174 mol dm ^{-₃} solution of HX at this temperature. Give your answer to 2 decimal places.
	(Extra space)

Calculate the pH of Give your answer to	o 2 decimal plac	es.		
			•••••	
•••••				
(Extra space)				

(Total 18 marks)

Q3.A student was given a task to determine the percentage purity of a sample of salicylic acid. The method used by the student to prepare a solution of salicylic acid is described below.

- 0.500 g of an impure sample of salicylic acid was placed in a weighing bottle.
- The contents were tipped into a beaker and 100 cm³ of distilled water were added.
- Salicylic acid does not dissolve well in cold water so the beaker and its contents were heated gently until all the solid had dissolved.
- The solution was poured into a 250 cm³ graduated flask and made up to the mark with distilled water.

(a)	Give two additional instructions that would improve this method for making up the salicylic acid solution.	
		(2)
(b)	The pH of this solution was measured and a value of 2.50 was obtained. Calculate the concentration of salicylic acid in this solution. Assume that salicylic acid is the only acid in this solution. The K_a for salicylic acid is 1.07 × 10 ⁻³ mol dm ⁻³ . You may represent salicylic acid as HA. Show your working.	
		(3)

(c) Use your answer to part (b) to calculate the mass of salicylic acid (M_r = 138.0) present in the original sample. (If you were unable to complete the calculation in part (b), assume that the

	answer.)	
		(2)
(d)	Use your answer to part (c) to calculate the percentage purity of the salicylic acid used to make the solution.	
	(If you were unable to complete the calculation in part (c), assume that the mass of salicylic acid is 0.347 g. This is not the correct answer.)	
		(1)
	(Total 8 m	` '