| Q1. ln t | this | quest | ion, give all values of pH to 2 decimal places. | | | | | | |-----------------|------|--|--|----|--|--|--|--| | (| a) | The ionic product of water has the symbol $K_{\scriptscriptstyle \!$ | | | | | | | | | | (i) | Write an expression for the ionic product of water. | | | | | | | | | | | (1 | | | | | | | | (ii) | At 42°C, the value of K_w is 3.46 × 10 ⁻¹⁴ mol ² dm ⁻⁶ . | | | | | | | | | | Calculate the pH of pure water at this temperature. | (2 | | | | | | | | | | | | | | | | | | (iii) | At 75 °C, a 0.0470 mol dm ⁻³ solution of sodium hydroxide has a pH of 11.36. Calculate a value for $K_{\rm w}$ at this temperature. | (2 | | | | | | | | | | | | | | | | (| b) | Methanoic acid (HCOOH) dissociates slightly in aqueous solution. | | | | | | | | | | (i) | Write an equation for this dissociation. | | | | | | | | | | | (1 | | | | | | | | | | | | | | | | | | (ii) | Write an expression for the acid dissociation constant K_a for methanoic acid. | | | | | | | | | (1) | |-------|--|-----| | (iii) | The value of K_a for methanoic acid is 1.78 × 10 ⁻⁴ mol dm ⁻³ at 25 °C. Calculate the pH of a 0.0560 mol dm ⁻³ solution of methanoic acid. | | | | | | | | | | | | | | | | | (3) | | (iv) | The dissociation of methanoic acid in aqueous solution is endothermic. | | | | Deduce whether the pH of a solution of methanoic acid will increase, decrease or stay the same if the solution is heated. Explain your answer. | | | | Effect on pH | | | | Explanation | | | | | | | | | | | | (Extra space) | | | | | (3) | | Th. | walva of K for worth on signarial is 4.70 v. 40-4 and I durat at 20°0 | | | A bu | e value of K_a for methanoic acid is 1.78 × 10 ⁻⁴ mol dm ⁻³ at 25°C. uffer solution is prepared containing 2.35 × 10 ⁻² mol of methanoic acid and 1.84 0^{-2} mol of sodium methanoate in 1.00 dm ³ of solution. | | | (i) | Calculate the pH of this buffer solution at 25°C. | | | | | | | | | | (c) | | (Extra space) | | |--------|--|-----------------| | | | | | (ii) | A 5.00 cm ³ sample of 0.100 mol dm ⁻³ hydrochloric acid is added to the solution in part (c)(i). | e buffer | | | Calculate the pH of the buffer solution after this addition. | (Extra space) | | | | | | | | | | | | |
(Total 20 m | | | | | | | | | | uestic | on is about several Brønsted–Lowry acids and bases. | | | Def | ine the term <i>Brønsted–Lowry</i> acid. | | | | | | | | | | Q2.This | | substand
Brønsted | ce immed
d–Lowry | diately abo
base (B) b | ve the boy
y writing <i>i</i> | x is acting as
A or B in each | a Brønst
ı of the si | ed–Lowry acid (A) or a ix boxes. | | |-----------|----------------------|---------------------|---|---|--|-------------------------|---|-----| | (i) CH₃C0 | ООН | + | H₂O | = | CH.COO- | + | H₃O⁺ | (1) | | (ii) CH₃ľ | NH_2 | + | H₂O | = | CH ₀ NH ₀ + | + | OH- | | | | | | | | | | | (1) | | (iii) H | INO ₃ | + | H₂SO₄ | = | H _a NO _a - | + | HSO₄ - | | | | | | | | | | | (1) | | (c) | Distilled | water wa | as added u | ntil the ph | ⊸ hydrochloric
I of the solutic
tion formed. S | n was 1. | (Extra sp | oace) | | | | | | | Three equilibria are shown below. For each reaction, indicate whether the (b) | At 2 | 98 K, the value of the acid dissociation constant (K_s) for the weak acid HX in | |-------|--| | que | eous solution is 3.01 × 10 ⁻⁵ mol dm ⁻³ . | | i) | Calculate the value of pK_a for HX at this temperature. Give your answer to 2 decimal places. | | | | | ;;\ | Write an expression for the acid dissociation constant (K_a) for the weak acid | | (ii) | HX. | | | | | | | | (iii) | Calculate the pH of a 0.174 mol dm ^{-₃} solution of HX at this temperature. Give your answer to 2 decimal places. | | | | | | | | | | | | | | | | | | (Extra space) | | | | | | | | Calculate the pH of
Give your answer to | o 2 decimal plac | es. | | | |--|------------------|-----|-------|--| ••••• | ••••• | (Extra space) | (Total 18 marks) **Q3.**A student was given a task to determine the percentage purity of a sample of salicylic acid. The method used by the student to prepare a solution of salicylic acid is described below. - 0.500 g of an impure sample of salicylic acid was placed in a weighing bottle. - The contents were tipped into a beaker and 100 cm³ of distilled water were added. - Salicylic acid does not dissolve well in cold water so the beaker and its contents were heated gently until all the solid had dissolved. - The solution was poured into a 250 cm³ graduated flask and made up to the mark with distilled water. | (a) | Give two additional instructions that would improve this method for making up the salicylic acid solution. | | |-----|--|-----| (2) | | | | | | (b) | The pH of this solution was measured and a value of 2.50 was obtained. Calculate the concentration of salicylic acid in this solution. Assume that salicylic acid is the only acid in this solution. The K_a for salicylic acid is 1.07 × 10 ⁻³ mol dm ⁻³ . You may represent salicylic acid as HA. Show your working. | (3) | | | | | (c) Use your answer to part (b) to calculate the mass of salicylic acid (M_r = 138.0) present in the original sample. (If you were unable to complete the calculation in part (b), assume that the | | answer.) | | |-----|---|-----| | | | | | | | | | | | (2) | | | | | | (d) | Use your answer to part (c) to calculate the percentage purity of the salicylic acid used to make the solution. | | | | (If you were unable to complete the calculation in part (c), assume that the mass of salicylic acid is 0.347 g. This is not the correct answer.) | | | | | | | | | (1) | | | (Total 8 m | ` ' |