M1.B

[1]

M2.A

[1]

M3.(a) (i) $-\log[H^{+}]$

Penalise missing [] here and not elsewhere

1

(ii) [H⁺][OH⁻]

1

(b) (i) $[H^+] = 2.34 \times 10^{-7}$

1

pH = 6.63

Penalise fewer than 3 sig figs but allow more than 2 dp

1

(ii) $[H^+] = [OH^-]$

1

(iii) M1 [H⁺] = K_w/[OH⁻]

if upside down or CE, allow M3 only for correct use of their
[H⁺]

1

M2 $(= 5.48 \times 10^{-14}/0.140) = 3.91 \times 10^{-13}$

1

M3 pH = 12.4(1) not 12.40 (AE from 12.407)

1

Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp - do not insist on 3 sig figs Not allow pH = 14 - pOH but can award M3 only for pH = 13.1(46)

Can award all three marks if $pK_w = 13.26$ is used

(c) М1 mol NaOH = mol OH $^-$ = (30 × 10 $^{-3}$) × 0.20 = 6.0 × 10 $^{-3}$ mark for answer 1 mol $H_2SO_4 = (25 \times 10^{-3}) \times 0.15 = 3.75 \times 10^{-3}$ **M2** mark for answer 1 mol H⁺ = $(25 \times 10^{-3}) \times 0.15 \times 2 = 7.5 \times 10^{-3}$ **M3** OR XS mol $H_2SO_4 = 0.75 \times 10^{-3}$ if factor of 2 missed or used wrongly, CE - lose M3 and next mark gained. In this case they must then use K_w to score any more. see examples below 1 **M4** XS mol H $^{+}$ = 1.5 × 10 $^{-3}$ 1 **M5** $[H^+] = (1.5 \times 10^{-3}) \times (1000/55) = 0.0273$ if no use or wrong use of volume, lose M5 and M6 except if 1000 missed AE - 1 (pH = 4.56) 1 **M6** pH = 1.56Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp - do not insist on 3 sig figs [14] M4.C [1] **M5**.(a) pH on the *y*-axis, volume of alkali on the *x*-axis If axes unlabelled use data to decide that pH is on y-axis.

1

	Uses sensible scales Lose this mark if plotted paths do not cover half of the paper. Lose this mark if the graph plot goes off the squared paper.	1
	Labels the axes Allow mark for axes labelled 'pH' and 'volume'.	1
	Plots all of the points correctly	1
	Line through the points is smooth and has the correct profile Ignore 0–5 cm³ section of the graph. Lose this mark if graph is kinked or not a single line.	1
	Line ignores the point at 12 cm ³ Lose this mark if point clearly not treated as an anomaly.	1
(b)	 (i) 24.4 cm³ ± 0.2 If no answer in (i) allow answer written on the graph. Allow this answer only. Do not penalise precision. 	1
	(ii) 12.2 cm³ ± 0.1 If no answer in (ii), allow answer written on the graph. Allow answer to (i) divided by 2. Do not penalise precision.	1

(iii) 3.9 ± 0.2

If no answer in (iii), allow answer written on the graph. Consequential marking from (ii)

1

(c) $pK_a = -\log K_a$ or $K_a = 10^x$, where x = - (answer to b(iii))

1

1.26 × 10⁻⁴

3.7 to 4.1 gives $K_a = 7.9 \times 10^{-5}$ to 2.0×10^{-4}

Consequential marking from b(i).

Correct answer without working scores 1 mark only.

Do not penalise precision.

1

(d) Methanoic acid

Consequential marking from (c).

 $pK_a = 3.7$ gives methanoic acid.

 $pK_a = 4.1$ gives ethanoic acid.

No lucky guesses – candidates must apply answer from (c).

Do not allow answers based on data given in (f).

1

(e) Error in using pipette is 0.2% **and**Error in using burette is 0.15 × 100 / (answer to b(i))

Using 24.4 for burette gives 0.6%

Do not penalise precision.

Allow if errors are given without working.

Lose mark if the burette error is not calculated on b(i).

If the error being calculated is **not** stated, allow **if** the calculations are in the same order as in the question (pipette, burette).

1

(f) Difference is $1.6 \times 10^{-4} - 1.26 \times 10^{-4} = 0.34 \times 10^{-4}$

Allow consequential answer from (c).

Do not penalise precision.

0.34 ×100 / 1.6 is a 21% error

Correct final answer without working scores 1 mark.

Using 1.9 × 10⁻⁴ gives 0.3 × 10⁻⁴ and 18.8%.

1

(g) Calibrate meter **or** thermostat the mixture **or** maintain constant temperature Do not allow 'repeat experiment'.

1

1

(h) Mixture is a buffer

[16]

M6.C

[1]

M7. (a) (i) $-\log[H^{+}]$ or $log1/[H^{+}]$ penalise ()

1

(ii) $[H^{\cdot}] = 0.56$ mark for the answer; allow 2dp or more

1

 $[H_2SO_4] = \frac{1}{2} \times 0.56 = 0.28$

1

(b) (i) $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$

OR

CH₃COOH + OH $^ \rightarrow$ CH₃COO $^-$ + H₂O

Allow CH₃CO₂H etc

1

(ii) mol acid = $(25.0 \times 10^{-3}) \times 0.41 = 1.025 \times 10^{-2}$ or 1.03×10^{-2}

1

[NaOH] = $1.025 \times 10^{-2}/22.6 \times 10^{-3} = 0.45(4)$

1

OR

[NaOH] = $1.03 \times 10^{-2}/22.6 \times 10^{-3} = 0.456$ or 0.46

(iii) cresol purple

1

(iv) NaOH reacts with <u>carbon dioxide</u> (in the air)

1

(c) (i) $K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$

allow molecular formulae or minor slip in formulae

penalise () allow H₃O⁺ not allow HA etc

1

(ii) $K_a = \frac{[H^+]^2}{[CH_3COOH]}$ or with numbers

1

allow HA etc here
This can be scored in part (c)(i) but doesn't score there.

$$[H^+] = (\sqrt{(1.74 \times 10^{-5} \times 0.410)} = \sqrt{(7.13 \times 10^{-6})}) = 2.67 \times 10^{-3}$$

1

mark for 2.67×10^{-3} or 2.7×10^{-3} either gives 2.57

pH = 2.57 can give three ticks here for (c)(ii) penalise decimal places < 2 >

1

pH mark conseq on their [H·] so 5.15 gets 2 marks where square root not taken

(iii) **M1** mol OH⁻ = $(10.0 \times 10^{-3}) \times 0.10 = 1.0 \times 10^{-3}$

If no subtraction or other wrong chemistry the max score is 3 for M1, M2 and M4

M2 orig mol HA = $(25.0 \times 10^{-3}) \times 0.41 = 0.01025$

1

1

or 1.025×10^{-2} or 1.03×10^{-2}

M3 mol HA in buffer = orig mol HA – mol OH-

1

= 0.00925 or 0.0093

If A^- is wrong, max 3 for M1, M2 and M3 or use of $pH = pKa - log [HA]/[A^-]$

M4 mol A- in buffer = mol OH- = 1.0 × 10-3

Mark is for insertion of correct numbers in correct expression for $[H^{\cdot}]$

1

$$\mathbf{M5} [H^{+}] = \left(\frac{K_a \times [CH_3COOH]}{[CH_3COO^{-}]} = \right)$$

1

$$\frac{(1.74 \times 10^{-6})(0.00925)}{0.0010}$$
 or $\frac{(1.74 \times 10^{-6})(0.00930)}{0.0010}$

 $(= 1.61 \times 10^{-4} \text{ or } 1.62 \times 10^{-4})$

M6 pH = 3.79 can give six ticks for 3.79

if [HA]/[A-] upside down lose M5 & M6

If wrong method e.g. [H-]²/[HA] max 3 for M1, M2 and M3 Some may calculate concentrations

[HA] = 0.264 and [A-] = 0.0286 and rounding this to 0.029 gives pH = 3.80 (which is OK)

NB Unlike (c)(ii), this pH mark is NOT awarded conseq to their [H⁺] unless following AE

BEWARE: using 0.01025 wrongly instead of 0.00925 gives pH = 3.75 (this gets 3 for M1, M2 & M4)

1

[18]