M1.	(a)	(i)	В	1
		С	1	l
		Α	1	L

(b)
$$pH = -log[H^+]$$

$$K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$$
 or $[H^{+}] = [A^{-}]$

pH = 2.79 (penalise 1 dp or more than 2dp once in the qu)

1

1

1

1

1

1

M2. (a) -log [H⁺] ecf if [] wrong and already penalised

4.57 × 10⁻₃

(b) (i) $K_a = \frac{[H^+][X^-]}{[HX]}$ allow HA etc

 $\begin{array}{l} & not \quad \frac{[H^+]^2}{[HX]} \\ & low \ conseq \ units \ in \ (ii) \\ & but \ no \ other \ marks \ in \ (ii) \end{array}$

(ii)
$$\frac{[H^+]^2}{[HX]} = \frac{(4 \cdot 57 \times 10^{-3})^2}{[0 \cdot 150]}$$
If use 4.6×10^{-3}

$$K_a = 1.4(1) \times 10^{-4} \text{ and } pKa = 3.85$$

$$= 1.39 \times 10^{-4}$$
allow $1.39 - 1.41 \times 10^{-4} \text{ mol } dm^{-3}$
(iii) $pK_a = 3.86$
Penalise dp of final answer < or > 2 in pH once in paper 1

(c) (i)
$$\frac{30}{1000} \times 0.480 = 0.0144 \text{ or } 1.4(4) \times 10^{-2}$$

Mark is for answer (M1)

1

1

(ii)
$$\frac{18}{1000} \times 0.350 = 0.0063 \text{ or } 6.3 \times 10^{-3}$$

Mark is for answer (M2)
(iii) $0.0144 - 2(0.0063) = 1.80 \times 10^{-3}$

1

1

(iv)
$$1.80 \times 10^{-3} \times \frac{1000}{48} = 0.0375 (0.038)$$

M4 is for answer

If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained If multiply by 48 - this is AE - i.e. lose only M4 If multiply by 48×10^{-3} this is AE - i.e. lose only M4

(v)
$$10^{-14}/0.0375$$
 $(10^{-14}/0.038)$
 $M5 \text{ for } K_*/[OH]$
1
(= 2.66 × 10⁻¹³) (= 2.63 × 10⁻¹³)
or pOH
or pOH = 1.426 (or pOH = 1.420)
If no attempt to use K_* or pOH lose both M5 and M6
1
pH = 12.57 (12.58) M6
Allow M6 conseq on AE in M5 if method OK
1
[13]

M3. (a)
$$K_a = \frac{[H^+][A^-]}{[HA]}$$

(All three sets of square brackets needed, penalise missing brackets or missing charge once in the question) (Don't penalise extra [H+]²/[HA])

(b)
$$K_{a} = \frac{[H^{+}]^{2}}{[HA]}$$
 or $[H^{+}] = [A^{-}]$
 $[H^{+}] = \sqrt{(1.45 \times 10^{-4}) \times 0.25}$
 $= 6.02 \times 10^{-3}pH = 2.22$
(must be to 2dp)
(allow 4th mark consequential on their [H^{+}])

1

1

(c) (i) pH (almost) unchanged (Must be correct to score explanation)

H⁺ removed by A⁻ forming HA or acid reacts with salt or more HA formed

1

1

1

1

(ii)
$$[H^{-1}] = 10^{-3.59} = 2.57 \times 10^{-4} \text{ or } 2.6 \times 10^{-4}$$

$$[A-] = \frac{K_{a}[HA]}{[H^{+}]}$$

$$= \frac{(1.45 \times 10^{-4}] \times 0.25}{2.57 \times 10^{-4}}$$

(ii) Alternative scheme for first three marks of part (c)(ii)

$$pH = pK_{a} - \log \frac{[HA]}{[A^{-}]}$$

$$pK_{a} = 3.84$$

$$1$$

$$3.59 = 3.84 - \log \frac{0.250}{[A^{-}]}$$

$$1$$

M4. (a) (i) B;

1

[11]

(ii) cresolphthalein

.....

4 0 5 0

OR thymolphthalein;

(ii)
$$[H^*] = 1.259 \times 10^{-12}$$
 (or 1.26 or 1.3)
 OR
 $OH = 14 - pH^2$

$$[OH^{-}] = \frac{10^{-14}}{1.258 \times 10^{-12}}$$

= 7.9(4) × 10⁻³; (if $[H^+]$ is wrong allow 1 for $[OH] = K_w/[H^+]$ or as numbers)

1

(c) (i)
$$K_{a} = [H^{+}]^{2}/[CH_{3}CH_{2}COOH]$$

 OR
 $[H^{+}]^{2}/[HA]$
 OR
 $[H^{+}] = [A^{-}] etc;$
 I
 $[H^{+}] = \sqrt{1.35 \times 10^{-5} \times 0.117} \text{ or expression without numbers;}$
 I
 $= 1.257 \times 10^{-3}$

(iii)
$$K_a = [H^*]$$

 OR
 $pK_a = pH;$
 $pH = 4.8\underline{7};$
(penalise 1dp once)

pН

= 2.9<u>0;</u>

[13]

1

1

M5. (a) Concentration of acid: $m_1v_1 = m_2v_2$ hence $25 \times m_1 = 18.2 \times 0.150$ OR moles NaOH = 2.73 × 10⁻³; $m_1 = 18.2 \times 0.150/25 = 0.109;$

(b) (i)
$$K_a = [H^+][A^-]/[HA]$$
 not $K_a = [H^+]^2 / [HA];$
(ii) $pK_a = -logK_a;$
(iii) $[A^-] = [HA];$
hence $K_a = [H^+] [A^-] / [HA] = [H^+]$
and $-logK_a = -log[H^+];$
1

(c) ratio [A⁻] : [HA] remains constant;

	henc	e as [H ⁺] = K _a [HA] / [A [_]];	[H⁺] remains constant;	1		
(d)	(i)	pH of 0.250 mol dm-³ HCl and pH of 0.150 mol dm-³ HCl	= 0.60 = 0.82;	1		
		pH change = 0.22;		1		
	(ii)	moles HCl = 30 × 0.250 × 10⁻₃ = v × 0.150 × 10⁻₃ = 7.50 × 10⁻₃ OR				
	v = 30 × 0.250 × 10 ⁻³ / 0.150 × 10 ⁻³ =50;					
		water added = 50 – 30 = 20 cm	3- ',	1		

.....

[12]