Q1.Titration curves, labelled E, F, G and \mathbf{H}, for combinations of different aqueous solutions of acids and bases are shown below.

All solutions have concentrations of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

G

H

(a) In this part of the question, write the appropriate letter in each box.

From the curves $\mathbf{E}, \mathbf{F}, \mathbf{G}$ and \mathbf{H}, choose the curve produced by the addition of
(i) sodium hydroxide to $25 \mathrm{~cm}^{3}$ of ethanoic acid

(ii) ammonia to $25 \mathrm{~cm}^{3}$ hydrobromic acid

(iii) hydrochloric acid to $25 \mathrm{~cm}^{3}$ of potassium hydroxide

(b) The table shows information about some acid-base indicators.

Indicator	$\mathbf{p H}$ range	Lower $\mathbf{p H}$ colour	Higher pH colour
pentamethoxy red	$1.2-3.2$	violet	colourless
naphthyl red	$3.7-5.0$	red	yellow
4-nitrophenol	$5.6-7.0$	colourless	yellow
cresol purple	$7.6-9.2$	yellow	purple

(i) Which indicator in the table could be used for the titration that produces curve \mathbf{E} but not for the titration that produces curve \mathbf{F} ?

Tick (\checkmark) one box.

(ii) Give the colour change at the end point of the titration that produces curve \mathbf{H} when naphthyl red is used as the indicator.
(iii) A beaker contains $25 \mathrm{~cm}^{3}$ of a buffer solution at $\mathrm{pH}=6.0$

Two drops of each of the four indicators in the table are added to this solution.
State the colour of the mixture of indicators in this buffer solution.
You should assume that the indicators do not react with each other.
\qquad

Q2.Titration curves labelled A, B, C and D for combinations of different aqueous solutions of acids and bases are shown below.
All solutions have a concentration of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

(a) In this part of the question write the appropriate letter in each box.

From the curves $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, choose the curve produced by the addition of ammonia to $25 \mathrm{~cm}^{3}$ of hydrochloric acid sodium hydroxide to $25 \mathrm{~cm}^{3}$ of ethanoic acid nitric acid to $25 \mathrm{~cm}^{3}$ of potassium hydroxide

(b) A table of acid.base indicators is shown below.

The pH ranges over which the indicators change colour and their colours in acid and alkali are also shown.

Indicator	pH range	Colour in acid	Colour in alkali
Trapaeolin	$1.3-3.0$	red	yellow
Bromocresol green	$3.8-5.4$	yellow	blue
Cresol purple	$7.6-9.2$	yellow	purple
Alizarin yellow	$10.1-12.0$	yellow	orange

(i) Select from the table an indicator that could be used in the titration that produces curve \mathbf{B} but not in the titration that produces curve \mathbf{A}.
\qquad
(ii) Give the colour change at the end point of the titration that produces curve \mathbf{D} when cresol purple is used as the indicator.
\qquad

Q3.When $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of salicylic acid and sodium hydroxide are mixed a buffer solution can be formed. Salicylic acid is a monoprotic acid that can be represented by the formula HA.
(a) Select a mixture from the table below that would produce a buffer solution. Give a
reason for your choice.

Mixture	Volume of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ salicylic acid solution $/ \mathbf{c m}^{3}$	Volume of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution / $\mathbf{c m}^{\mathbf{3}}$
\mathbf{X}	25	75
\mathbf{Y}	50	50
\mathbf{Z}	75	25

Mixture \qquad
Reason \qquad
\qquad
\qquad
(b) Another mixture, formed by adding $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ salicylic acid solution to $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution, can be used to determine the $\mathrm{p} K_{\mathrm{a}}$ of salicylic acid. State one measurement that must be made for this mixture and explain how this measurement can be used to determine the pK_{a} of salicylic acid.

Measurement \qquad
Explanation \qquad
\qquad
\qquad

Q4.In order to obtain a pH curve, you are provided with a conical flask containing $25.0 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ carboxylic acid solution and a burette filled with $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution. You are also provided with a calibrated pH meter.
(a) State why calibrating a pH meter just before it is used improves the accuracy of the pH measurement.
\qquad
\qquad
(b) Describe how you would obtain the pH curve for the titration.
\qquad

Q5.Ammonium chloride, when dissolved in water, can act as a weak acid as shown by the following equation.

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

The following figure shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

(a) Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution.
Explain why this apparatus is more suitable than a pipette for this purpose.
Apparatus
Explanation \qquad
\qquad
\qquad
(b) Use information from the curve in the figure above to explain why the end point of this reaction would be difficult to judge accurately using an indicator.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The pH at the end point of this reaction is 11.8.

Use this pH value and the ionic product of water, $K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$, to calculate the concentration of hydroxide ions at the end point of the reaction.

Concentration = \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(d) The expression for the acid dissociation constant for aqueous ammonium ions is

$$
k_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

The initial concentration of the ammonium chloride solution was $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$.
Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for K_{a}

$$
\begin{equation*}
K_{\mathrm{a}}=\ldots . ~ \mathrm{~mol} \mathrm{dm}^{-3} \tag{3}
\end{equation*}
$$

(e) A solution contains equal concentrations of ammonia and ammonium ions.

Use your value of K_{a} from part (d) to calculate the pH of this solution. Explain your working.
(If you were unable to calculate a value for K_{a} you may assume that it has the value $4.75 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$. This is not the correct value.)

$$
\mathrm{pH}=
$$

\qquad

Q6.In an experiment to determine the acid dissociation constant (K_{a}) of a weak acid, $25.0 \mathrm{~cm}^{3}$ of an approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of this acid were titrated with a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide.
The pH was measured at intervals and recorded. The table below shows the results.

Volume of $\mathrm{NaOH} / \mathrm{cm}^{3}$	0.0	1.0	2.0	3.0	4.0	5.0	10.0	15.0
$\mathbf{p H}$	5.1	7.8	8.1	8.7	8.4	8.5	8.9	9.3

Volume of $\mathrm{NaOH} / \mathrm{cm}^{3}$	20.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0
$\mathbf{p H}$	9.7	10.0	10.2	11.0	11.3	11.4	11.5	11.6

(a) On the grid below, plot the values from the table above on a graph of pH (y-axis) against volume of NaOH .
You should start your y-axis at pH 4.0 .
Draw a curve that represents the curve of best fit through these points. Ignore any anomalous points.

(b) Deduce the volume of the sodium hydroxide solution that would have been added at the half-neutralisation point of this experiment. This is the point where half the amount of the weak acid has been neutralised.
\qquad
(c) When half of the weak acid has been neutralised, the pH of the mixture at this point is equal to the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid.

Use your answer to part (b) and your graph to determine the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid and, hence, its K_{a} value.
$\mathrm{p} K_{\mathrm{a}}$ \qquad
K_{a} \qquad
(d) State the pH value for the anomalous point on your graph. Suggest one reason for this anomaly. Assume that the reading on the pH meter is correct.
pH
Reason for anomaly \qquad
\qquad
\qquad
(e) Suggest how the experimental procedure could be slightly modified in order to give a more reliable value for the end-point.
\qquad
\qquad
\qquad

