M1.(a) Proton donor or H^{+}donor
(b) (i)

$$
K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \text { or } \frac{\left[\mathrm{CH}_{3} \mathrm{COOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

If K_{a} wrong, can only score M1 below.
Must be ethanoic acid not HA
Must have square brackets (penalise here only) but mark on in (b)(ii).
(ii) $\mathrm{M} 1\left[\mathrm{H}^{+}\right]=10^{-269}$ OR $2.042 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

M2 $\left.\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{a}}$
Ignore ()
Mark for correctly rearranged expression incl $\left[H^{+}\right]^{2}$

M3
$=\frac{\left(2.042 \times 10^{-3}\right)^{2}}{1.75 \times 10^{-5}}$
If M2 wrong no further marks.

M4 $=0.238\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Allow $0.229-0.24$
(c) (i) $\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$

Allow \longrightarrow
Allow $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{ClCH}_{2} \mathrm{CO}_{2}^{-}$
(ii) M1 Cl is (more electronegative so) withdraws electrons $O R$ negative inductive effect of Cl Ignore electronegativity.
Ignore chloroethanoic acid has a lower K_{a} value.
Allow Cl reduces + ve inductive effect of methyl group.

M2 Weakens O-H bond
OR $\mathrm{O}-\mathrm{H}$ bond is more polar
OR reduces negative charge on COO^{-}
OR stabilizes COO^{-}(more)
M1 \& M2 are independent marks.
Ignore H^{+}lost more easily.
(d) (i) A
(ii) C
(iii) D
(e) $\mathrm{M} 1 \mathrm{Mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(19.6 \times 10^{-3}\right) \times 0.720=1.41(1) \times 10^{-2}$

Mark for answer.
$\mathrm{M} 2 \mathrm{Mol} \mathrm{H}_{2} \mathrm{SO}_{4}=\left(26.4 \times 10^{-3}\right) \times 0.550=1.45(2) \times 10^{-2}$
Mark for answer.

M3 Mol H${ }^{+}$added $=2 \times\left(1.452 \times 10^{-2}\right)=2.90(4) \times 10^{-2}$ OR
$\mathrm{XS} \mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}=7.46(4) \times 10^{-3}$
If factor $\times 2$ missed completely $(\mathrm{pH}=2.05)$
or used wrongly later, can score max 4 for M1, M2, M5 \& M6

M4 XS mol H${ }^{+}=0.0149(3)$

M5 For dividing by volume
$\left[\mathrm{H}^{+}\right]=0.0149(3) \times(1000 / 46.0)=0.324-0.325 \mathrm{~mol} \mathrm{dm}^{-3}$
If no use or wrong use of volume lose M5 and M6
ie can score 4 for $\mathrm{pH}=1.83$ (no use of vol)
Treat missing 1000 as $A E(-1)$ \& score 5 for $\mathrm{pH}=3.49$

M6 pH $=0.49$
2dp (penalise more or less).
If $\times 2$ missed \& vol not used, $\mathrm{pH}=3.39$ scores M1 \& M2 only.

M2.(a) $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$
Accept multiples.
Accept $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Ignore state symbols, even if incorrect.
(b) Test indicator / conc HCl

Do not accept 'smell'.
Do not accept precipitation reactions of aqueous ammonia.

Observation colour for an alkali / white fumes
If wrong test then lose second mark.

M3. (a) (i) B 1

C

A

(ii) cresolphthalein or thymolphthalein
(b) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \text { or }\left[\mathrm{H}^{+}\right]=[\mathrm{A}] \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{ } \square 1.74 \times 10^{-5} \times 0.15\left(\text { or } 1.62 \times 10^{-3}\right)} \\
& \mathrm{pH}=2.79 \text { (penalise } 1 \mathrm{dp} \text { or more than 2dp once in the } \mathrm{qu} \text {) }
\end{aligned}
$$

M4.(a) pH on the y-axis, volume of alkali on the x-axis If axes unlabelled use data to decide that pH is on y-axis.

Labels the axes
Allow mark for axes labelled ' pH ' and 'volume'.

Plots all of the points correctly

Line through the points is smooth and has the correct profile Ignore $0-5 \mathrm{~cm}^{3}$ section of the graph.
Lose this mark if graph is kinked or not a single line.

Line ignores the point at $12 \mathrm{~cm}^{3}$
Lose this mark if point clearly not treated as an anomaly.
(b) (i) $24.4 \mathrm{~cm}^{3} \pm 0.2$

If no answer in (i) allow answer written on the graph.
Allow this answer only.
Do not penalise precision.
(ii) $12.2 \mathrm{~cm}^{3} \pm 0.1$

If no answer in (ii), allow answer written on the graph.
Allow answer to (i) divided by 2.
Do not penalise precision.
(iii) 3.9 ± 0.2

If no answer in (iii), allow answer written on the graph.
Consequential marking from (ii)
Lose this mark if answer not given to 1 dp .
(c) $\mathrm{p} K_{a}=-\log K_{a}$ or $K_{a}=10^{x}$, where $x=-($ answer to $\mathrm{b}(i i i))$
1.26×10^{-4}
3.7 to 4.1 gives $K_{a}=7.9 \times 10^{-5}$ to 2.0×10^{-4}

Consequential marking from b (i).
Correct answer without working scores 1 mark only.

Page 6

Do not penalise precision.
(d) Methanoic acid

Consequential marking from (c).
$p K_{a}=3.7$ gives methanoic acid.
$p K_{a}=4.1$ gives ethanoic acid.
No lucky guesses - candidates must apply answer from (c).
Do not allow answers based on data given in (f).
(e) Error in using pipette is 0.2% and Error in using burette is $0.15 \times 100 /($ answer to b(i))

Using 24.4 for burette gives 0.6%
Do not penalise precision.
Allow if errors are given without working.
Lose mark if the burette error is not calculated on b(i).
If the error being calculated is not stated, allow if the calculations are in the same order as in the question (pipette, burette).
(f) Difference is $1.6 \times 10^{-4}-1.26 \times 10^{-4}=0.34 \times 10^{-4}$

Allow consequential answer from (c).
Do not penalise precision.
$0.34 \times 100 / 1.6$ is a 21% error
Correct final answer without working scores 1 mark.
Using 1.9×10^{-4} gives 0.3×10^{-4} and 18.8%.
(g) Calibrate meter or thermostat the mixture or maintain constant temperature Do not allow 'repeat experiment'.
(h) Mixture is a buffer

