M1.(a) Law of conservation of angular momentum applies and $I_{1} \omega_{1}=I_{2} \omega_{2}$
OR Law of conservation of angular momentum applies and angular momentum = I
$\omega$
(because no external torque acts)
Adding plasticine increases $I \checkmark$
So $\omega$ must decrease to maintain I $\omega$ constant / to conserve angular momentum $\checkmark$
(b) $\quad I \times 3.46=\left(I+0.016 \times 0.125^{2}\right) \times 3.31$
$I=0.00552 \mathrm{~kg} \mathrm{~m}^{2} \checkmark 3 \mathrm{sf} \downarrow$
Useful: $m r^{2}=2.5 \times 10^{-4}$
Sig fig mark $s$ an independent mark
If method correct but incorrect conversion of g to kg or mm to $m$, award 1 mark out of first 2 marks
(c) (i) $\Delta \mathrm{E}=1 / 2 I \omega_{1}{ }^{2}-1 / 2\left(I+m r^{2}\right) \omega_{2}{ }^{2}$ $=\left[1 / 2 \times 5.52 \times 10^{-3} \times 3.46^{2}\right]-$ $\left[1 / 2 \times 5.77 \times 10^{-3} \times 3.31^{2}\right] \downarrow$ $=1.39 \times 10^{-3} \mathrm{~J}$ J
CE for I of turntable or I of plasticine from $2 b$ Answers will vary depending on rounding e.g. accept $1.43 \times$ $10^{-3}$
(ii) Work done against friction / deforming plasticine as it collides with turntable / to move or acclerate plasticine

Allow heat loss on collision
Do not allow energy to sound

M2.(a) The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system)
(b) $\quad I$ is the sum of the $m r^{2}$ products for point masses $m$ at radius $r \checkmark$

Or WTTE
Not $m$ is the mass and $r$ the radius - must refer to point or small masses or distribution of mass

OR
$\Sigma m r^{2}$ with $m$ and $r$ defined
OR
$I$ is a measure of the mass and the way the mass is distributed about an axis

More of the satellite's mass is at greater radius $\checkmark$
(Small change in $r$ ) gives large change in $r^{2}$, hence large change in I
OR even though $m$ of panels is small, much of $m$ is at a greater radius and radius is squared

For $2^{n d}$ mark must refer to effect of $r^{2}$.
(c) Angular momentum $=110 \times 5.2=572 \checkmark$

Nms OR kg m $\mathrm{m}^{\mathbf{s}-1} \checkmark$
accept
$\mathrm{kg} \mathrm{m}^{2}$ rad $\mathrm{s}^{-1}$
(d) (Use of conservation of ang momtm) $572=230 \times \omega_{2} \checkmark$

M3.(a) Use of $I=\Sigma m r^{2}$ or expressed in words $\checkmark$
With legs close to chest, more mass at smaller $r$, so / smaller
(b) (i) Angular momentum is conserved / must remain constant OR no external torque acts $\sqrt{ }$

WTTE
as / decreases, $\omega$ increases and vice versa to maintain / $\omega$ constant $\checkmark$ OR as I varies, $\omega$ must vary to maintain I $\omega$ constant
(ii) (Angular velocity increases initially then decreases (as he straightens up to enter the water)).

No mark for just ang. vel starts low then increases then decreases, i.e. for describing $\omega$ only at positions 1,2 and 3.

With one detail point e.g.

- Angular velocity when entering water is greater than at time $t=0$
s.
- Angular velocity increases, decreases, increases, decreases
- Maximum angular velocity at $t=0.4 \mathrm{~s}$
- Greatest rate of change of ang. vel. is near the start
- Angular velocity will vary as inverse of M of I graph
(c) angular. momentum $=10.9 \times 4.4=48(\mathrm{~N} \mathrm{~m} \mathrm{~s}) \checkmark$
( $\omega_{\text {max }}$ occurs at minimum / )
Allow 6.3 to 6.5. If out of tolerance e.g. 6.2
give $A E$ for final answer
minimum $I=6.4 \mathrm{~kg} \mathrm{~m}^{2}($ at 0.4 s$)$

$$
\begin{aligned}
& \qquad 6.4 \times \omega_{\max }=48 \text { leading to } \\
& \omega_{\max }=7.5 \mathrm{rad} \mathrm{~s}^{-1} \checkmark \\
& \text { (Total } 8 \text { marks) }
\end{aligned}
$$

