M1.(a)

```
    \(1 \checkmark\)
    \(0 \checkmark 1 \checkmark\)
    …
ud \(\checkmark\) uud \(\checkmark\)
```

1 mark each
(b) Strong nuclear circled \checkmark
(c) Charge $\quad 1+1=1+X \quad X=1 \checkmark$

Baryon number $\quad 0+1=0+X \quad X=1 \checkmark$

Strangeness $\quad 0+0=1+X \quad X=-1 \Omega$
Any order
(d) Weak nuclear circled \checkmark
(e) Strangeness of X is -1 ,

First mark is for showing that strangeness changes
The strangeness of the pion and neutron are both zero

The strangeness changes from -1 to $0 \checkmark$
This can only occur in weak interactions.
Second is for stating that this can only happen if the interaction is weak.
(f)

First mark is for the proton
$n \rightarrow p \checkmark+\beta+v_{\mathrm{c}}$
Second is for the beta minus and antineutrino.
(g) The only particles remaining are electrons / positrons and neutrinos / antineutrinos which are stable

1

And a proton which is the only stable baryon \checkmark
1

M2.C

M3. (a) $\mathrm{Y} /$ (pair of) gamma (ray(s))/Z。(particles) (followed by gamma rays)/ photon(s) of electromagnetic radiation
(b) (i) mass can be converted to energy and vice versa
(ii) charge
baryon number
lepton number
minus 1 for each incorrect answer if more than 3 answers are given

M4. (a) (i) any two eg proton, neutron $\checkmark^{\prime} \vee^{\prime}$
(ii) $u \bar{d} v^{\prime}$
(b) (i) contains a strange quark or longer half life than expected or decays by weak interaction
(ii) the second one is not possible \checkmark
because lepton number is not conserved \checkmark
(c) (i) weak (interaction) \checkmark^{\prime}
(ii) mention of charge conservation or charge conservation demonstrated by numbers
(iii) X must be a baryon $\checkmark^{\text { }}$ baryon number on right hand side is +1
(iv) proton/p

M5. (a) electron/neutrino/tau/muon
proton/neutron
kaon/k particle/k meson/pion/pi meson
(b) (i) charge
correct equation: $1+0 \neq 1+(-1)$
1 mark lost for additional conservation law stated as broken

A1
(ii) any other correct conservation (lepton: $0+0=0+0$; baryon: $0+1=1+0$; strangeness: $0+0=0+0$)
(c) annihilation

B1
release of energy/pair of gamma rays

B1

M6.
(a) (i) three (1)
one (1)
(b) (i) charge (1)
baryon number (1)
lepton number (1)
mass (1)
energy (1)
momentum (1)
$\max 2$
(ii) strangeness (1)
(iii) weak interaction/(nuclear) force (1)
(iv) proton (1)

