M1. (a)	(mom <u>betw</u>	ent =) Force x <u>perpendicular</u> distance ✓ <u>veen line of action</u> (of force) <u>and pivot / point ✓</u> both marks need to be clear – avoid bod if the force is named specifically (e.g. weight) mark the work but give a maximum of 1 mark ignore extra material such as law of moments	2
(b)	(i)	<pre>moment = 250 × 0.048 = 12 ✓ (allow 12000 for this mark) only allow answers in other units if consistent e.g. 1200 N cm N m ✓ (stand alone mark if no number is present but only for N mm, N am and N m)</pre>	
		cm and N m) no working shown can gain full marks if answer and unit are consistent newton should be upper case if a symbol and metre should be in lower case (but only penalise if it is very obviously wrong)	2
	(ii)	$Y \times 0.027 = 12 \qquad OR \qquad Y = 12 / 0.027 \checkmark$ (allow use of 12 and 27 for this mark) = 440 (N) \checkmark (444.4 N) \qquad CE from (i) Y = (i) / 0.027 treat power of 10 error as an AE note 450 N is wrong 1 sig fig is not acceptable	2
	(iii)	$(k = F / \Delta L)$ = 444.4 / 0.015 \checkmark CE from (ii) = 3.0 × 10 ⁴ (Nm ⁻¹) \checkmark (29630 Nm ⁻¹) k = (ii) / 0.015 treat power of 10 error as an AE	

2

(iv) $W (= \frac{1}{2} F \Delta L) = \frac{1}{2} \times 444.4 \times 0.015$

using 440 gives 2.9×10^4 (Nm⁻¹)

1 sig fig is not acceptable

Or $W (= \frac{1}{2} k \Delta L^2) = \frac{1}{2} \times 29630 \times 0.015^2 \checkmark$ (give this mark for seeing the digits only ie ignore powers of 10 and allow CE from (ii) or (iii) as appropriate $= 3.3 (J) \checkmark (3.333 J)$ $W = \frac{1}{2} \times (ii) \times 0.015$ $W = \frac{1}{2} \times (iii) \times 0.015^2$ treat power of 10 error as an AE if either equation misses out the $\frac{1}{2}$ no marks common CE is to use F = 250 N which can be used giving W = 1.9 J

M2.(a)

breaking stress	
stiffness constant, k	
tensile strain	
tensile stress	
Young modulus	~

(b) (i) elastic limit ✓ only one attempt at the answer is allowed

1

2

1

2

[10]

- (ii) (*E* = 300 × 10⁶ / 4 × 10⁻² = 7.5 × 10⁹)
 7.5 (Pa) ✓ allow 7.4 to 7.6 (Pa)
 × 10⁹ ✓
 first mark is for most significant digits ignoring the power of 10. E.g. 7500 gains mark
- (c) <u>straight line</u> beginning on existing line at a strain of 0.10 and hitting the strain axis at a lower non-zero value ✓

	line that ends on the x -axis with strain between 0.045 and 0.055 \checkmark (only allow if first mark is given)		
	ie accuracy required ± one division	2	
(d)	8.99 × 10 ⁻³ (m ³) ✓ condone 1 sig fig <i>allow 9.00</i> × <i>10</i> ⁻³	1	
(e)	$0.9872 \times 8.99 \times 10^{-3} \text{ or } = 8.8749 \times 10^{-3} \text{ (m}^3) \checkmark$ allow CE from 4d $(m = \rho V) = 2700 \times 8.8749 \times 10^{-3} = 24 \text{ (kg) } \checkmark (23.962 \text{ kg})$ allow CE from first part, e.g. if 1.28% was used gives 0.311 kg $V = 0.9872 \times (d)$ $m = 2.665 \times (d)$ $1.28\% \text{ of vol } = 1.15 \times 10^{-4} \text{ m}^3$	2	[9]
M3. D			[1]
M4. (a)	(i) 11 (m) B1	1	
	(ii) Use of $F = k\Delta L$ or $W = mg$ Allow use of $\Delta L = 12 m$ 3400 (N)		

A1

2

		C1	
	1.9 (m)	A1	2
(c)	Correct use of $W = \frac{1}{2}k\Delta L^2$ or $\frac{1}{2}F\Delta L$ $\Delta L = 5 m$		
		C1	
	Correct use of $\Delta GPE = mg\Delta h$ $\Delta h = 25 m$		
		C1	
	States or uses $(mg\Delta h) - (\frac{1}{2} k\Delta L^2) = \frac{1}{2}mv^2$	C1	
	19 (m s⁻¹) cnao	01	
		A1	4
(d)	Same kinetic energy when rope begins to stretch		
	Mare work done ner write extension (stone in charter distance	B1	
	"Shorter time" gets no credit		
		B1	
	Increases force on jumper (increasing the risk of injury)	B1	
		5.	3 [12]

....

M6.C