M1.(a) (moment =) Force \times perpendicular distance between line of action (of force) and pivot / point \checkmark both marks need to be clear - avoid bod if the force is named specifically (e.g. weight) mark the work but give a maximum of 1 mark ignore extra material such as law of moments
(b) (i) moment $=250 \times 0.048=12 \checkmark$ (allow 12000 for this mark) only allow answers in other units if consistent e.g. 1200 Ncm
$\mathbf{N} \mathbf{m} \checkmark$ (stand alone mark if no number is present but only for Nmm, N cm and Nm)
no working shown can gain full marks if answer and unit are consistent newton should be upper case if a symbol and metre should be in lower case (but only penalise if it is very obviously wrong)
(ii) $Y \times 0.027=12 \quad O R \quad Y=12 / 0.027$
(allow use of 12 and 27 for this mark)
$=440(\mathrm{~N}) \checkmark(444.4 \mathrm{~N}) \quad \mathrm{CE}$ from (i)
$Y=$ (i) $/ 0.027$
treat power of 10 error as an AE
note 450 N is wrong
1 sig fig is not acceptable
(iii) $\quad(k=F / \Delta L)$
$=444.4 / 0.015 \checkmark$ CE from (ii)
$=3.0 \times 10^{4}\left(\mathrm{Nm}^{-1}\right) \checkmark\left(29630 \mathrm{Nm}^{-1}\right)$
$k=(i i) / 0.015$
treat power of 10 error as an AE
using 440 gives $2.9 \times 10^{4}\left(\mathrm{Nm}^{-1}\right)$
1 sig fig is not acceptable
(iv) $W(=1 / 2 F \Delta L)=1 / 2 \times 444.4 \times 0.015$

Or
$W\left(=1 / 2 k \Delta L^{2}\right)=1 / 2 \times 29630 \times 0.015^{2}$,
(give this mark for seeing the digits only ie ignore powers of 10 and allow CE from (ii) or (iii) as appropriate

$$
=3.3 \text { (J) } \checkmark \quad(3.333 \mathrm{~J})
$$

$$
W=1 / 2 \times(i i) \times 0.015
$$

$$
W=1 / 2 \times(\mathrm{iii}) \times 0.015^{2}
$$

$$
\text { treat power of } 10 \text { error as an } A E
$$

if either equation misses out the $1 / 2$ no marks common CE is to use $F=250 \mathrm{~N}$ which can be used giving $W=1.9 \mathrm{~J}$

M2.(a)

breaking stress	\checkmark
stiffness constant, k	
tensile strain	
tensile stress	
Young modulus	\checkmark

(b) (i) elastic limit
only one attempt at the answer is allowed
(ii) $\quad\left(E=300 \times 10^{6} / 4 \times 10^{-2}=7.5 \times 10^{9}\right)$
$7.5(\mathrm{~Pa}) \checkmark$ allow 7.4 to $7.6(\mathrm{~Pa})$
$\times 10^{9}$
first mark is for most significant digits ignoring the power of 10. E.g. 7500 gains mark
(c) straight line beginning on existing line at a strain of 0.10 and hitting the strain axis at a lower non-zero value
line that ends on the x -axis with strain between 0.045 and $0.055 \checkmark$ (only allow if first mark is given)
ie accuracy required \pm one division
(d) $8.99 \times 10^{-3}\left(\mathrm{~m}^{3}\right) \checkmark$ condone 1 sig fig allow 9.00×10^{-3}
(e) $0.9872 \times 8.99 \times 10^{-3}$ or $=8.8749 \times 10^{-3}\left(\mathrm{~m}^{3}\right)$ allow CE from 4 d
$(m=\rho V)=2700 \times 8.8749 \times 10^{-3}=24(\mathrm{~kg}) \checkmark(23.962 \mathrm{~kg})$
allow CE from first part, e.g. if 1.28% was used gives 0.311 kg

$$
V=0.9872 \times(d)
$$

$$
m=2.665 \times(d)
$$

$$
1.28 \% \text { of } \mathrm{vol}=1.15 \times 10^{-4} \mathrm{~m}^{3}
$$

M3.D

M4.(a) (i) $\quad 11$ (m)
(ii) Use of $F=k \Delta L$ or $W=m g$

Allow use of $\Delta L=12 \mathrm{~m}$

3400 (N)
(b) Sets $m g=k \Delta L$

C1
1.9 (m)

A1
(c) Correct use of $W=1 / 2 k \Delta L^{2}$ or $1 / 2 F \Delta L$

$$
\Delta L=5 \mathrm{~m}
$$

Correct use of $\triangle G P E=m g \Delta h$

$$
\Delta h=25 m
$$

States or uses $(m g \Delta h)-\left(1 / 2 k \Delta L^{2}\right)=1 / 2 m v^{2}$
$19\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ cnao
(d) Same kinetic energy when rope begins to stretch

B1
More work done per unit extension / stops in shorter distance
"Shorter time" gets no credit

Increases force on jumper (increasing the risk of injury)

M6.C

