Q1.An uncharged 4.7 nF capacitor is connected to a 1.5 V supply and becomes fully charged.

How many electrons are transferred to the negative plate of the capacitor during this charging process?

A $\quad 2.2 \times 10^{10}$
B $\quad 3.3 \times 10^{10}$

C $\quad 4.4 \times 10^{10}$
D $\quad 8.8 \times 10^{10}$
(Total 1 mark)

Q2.When fully charged the 2.0 mF capacitor used as a backup for a memory unit has a potential difference of 5.0 V across it. The capacitor is required to supply a constant current of $1.0 \mu \mathrm{~A}$ and can be used until the potential difference across it falls by 10%. For how long can the capacitor be used before it must be recharged?

A $\quad 10 \mathrm{~s}$

B $\quad 100 \mathrm{~s}$
C $\quad 200 \mathrm{~s}$

D $\quad 1000 \mathrm{~s}$
(Total 1 mark)

Q3.A capacitor of capacitance $10 \mu \mathrm{~F}$ is charged through a resistor R to a potential difference (pd) of 20 V using the circuit shown.

When the capacitor is fully charged which one of the following statements is incorrect?
A The energy stored by the capacitor is 2 mJ .
B The total energy taken from the battery during the charging process is 2 mJ .
C The pd across the capacitor is 20 V .
D The pd across the resistor is 0 V .

Q4.The diagram shows a rigidly-clamped straight horizontal current-carrying wire held mid-way between the poles of a magnet on a top-pan balance. The wire is perpendicular to the magnetic field direction.

The balance, which was zeroed before the switch was closed, read 161 g after the switch was closed. When the current is reversed and doubled, what would be the new reading on the balance?

A $\quad-322 \mathrm{~g}$

B $\quad-161 \mathrm{~g}$
C zero

D $\quad 322 \mathrm{~g}$
(Total 1 mark)

Q5.Which of the following statements about a parallel plate capacitor is incorrect?

A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V . \square

B A uniform electric field exists between the plates of the capacitor.

C The charge stored on the capacitor is inversely proportional to the pd across the plates.

D The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.

Q6.A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500Ω resistor from an initial pd of 6.0 V . The datalogger is capable of recording 1000 readings in 10 s.

After a time equal to the time constant of the discharge circuit, which one of the rows gives the pd and the number of readings made?

	Potential difference / V	Number of readings	
A	2.2	50	\square
B	3.8	50	\square
C	3.8	500	\square
D	2.2	500	\square

(Total 1 mark)

Q7.Initially a charged capacitor stores $1600 \mu \mathrm{~J}$ of energy. When the pd across it decreases by 2.0 V , the energy stored by it becomes $400 \mu \mathrm{~J}$.

What is the capacitance of this capacitor?
A $\quad 100 \mu \mathrm{~F}$
B $\quad 200 \mu \mathrm{~F}$
C $\quad 400 \mu \mathrm{~F}$
D $\quad 600 \mu \mathrm{~F}$
(Total 1 mark)

Q8.Switch S in the circuit is held in position 1, so that the capacitor C becomes fully charged to a pd V and stores energy E.

The switch is then moved quickly to position 2 , allowing C to discharge through the fixed resistor R. It takes 36 ms for the pd across C to fall to $\frac{V}{2}$. What period of time must elapse, after the switch has moved to position 2 , before the energy stored by C has fallen to $\frac{E}{16}$?

A 51 ms
B $\quad 72 \mathrm{~ms}$
C $\quad 432 \mathrm{~ms}$
D $\quad 576 \mathrm{~ms}$

Q9.A nuclear fusion device is required to deliver at least 1 MJ of energy using capacitors. If the largest workable potential difference is 10 kV , what is the minimum capacitance of the capacitors that should be used?

A $\quad 0.01 \mathrm{~F}$
B $\quad 0.02 \mathrm{~F}$
C 2 F
D 100 F

Q10. In the circuit shown the capacitor C charges when switch S is closed.

Which line, \mathbf{A} to \mathbf{D}, in the table gives a correct pair of graphs showing how the charge on the capacitor and the current in the circuit change with time after S is closed?

	charge	current
A	graph 1	graph 1
B	graph 1	graph 2
C	graph 2	graph 2
D	graph 2	graph 1

Q11.The voltage across a capacitor falls from 10 V to 5 V in 48 ms as it discharge through a resistor. What is the time constant of the circuit?

A $\quad 24 \mathrm{~ms}$

B $\quad 33 \mathrm{~ms}$

C $\quad 69 \mathrm{~ms}$

D $\quad 96 \mathrm{~ms}$

Q12.An initially uncharged capacitor of capacitance $20 \mu \mathrm{~F}$ is charged by a constant current of $80 \mu \mathrm{~A}$. Which line, A to D, in the table gives the potential difference across, and the energy stored in, the capacitor after 50 s?

	potential difference $/ \mathrm{V}$	energy stored / J
A	4.0×10^{-3}	2.0×10^{-3}
B	4.0×10^{-3}	4.0×10^{-1}
C	2.0×10^{2}	2.0×10^{-3}
D	2.0×10^{2}	4.0×10^{-1}

(Total 1 mark)

Q13.Which one of the following statements about a parallel plate capacitor is incorrect?

A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V .

B A uniform electric field exists between the plates of the capacitor.
C The charge stored on the capacitor is inversely proportional to the pd across the plates.

D The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.

Q14. A $1000 \mu \mathrm{~F}$ capacitor and a $10 \mu \mathrm{~F}$ capacitor are charged so that they store the same energy. The pd across the $1000 \mu \mathrm{~F}$ capacitor is V_{1} and the pd across the other capacitor is $\mathrm{V}_{\mathbf{2}}$.

What is the value of the ratio $\left(\frac{V_{1}}{V_{2}}\right)^{2} \boldsymbol{?}$
A $\frac{1}{1000}$

B $\frac{1}{100}$

C $\frac{1}{10}$

D $\quad 10$

Q15. A voltage sensor and a datalogger are used to record the discharge of a $\mathbf{1 0} \mathbf{~ m F}$ capacitor in series with a 500Ω resistor from an initial pd of 6.0 V . The datalogger is capable of recording 1000 readings in $\mathbf{1 0}$ s. Which line, A to D, in the table gives the pd and the number of readings made after a time equal to the time constant of the discharge circuit?

	potential difference/V	number of readings
A	2.2	50
B	3.8	50
C	3.8	500
D	2.2	500

(Total 1 mark)

Q16. When a $220 \mu \mathrm{~F}$ capacitor is discharged through a resistor R , the capacitor pd decreases from 6.0 V to 1.5 V in 92 s .

What is the resistance of R ?

A $210 \mathrm{k} \Omega$

B $\quad 300 \mathrm{k} \Omega$

C $420 \mathrm{k} \Omega$

D $\quad 440 \mathrm{k} \Omega$
(Total 1 mark)

Q17. A capacitor stores a charge of $600 \mu \mathrm{C}$ when charged to a potential difference (pd) of 6.0 V . What will be the pd across the plates if the charge stored increases by

50\%?
A 3.0 V
B $\quad 4.5 \mathrm{~V}$
C 9.0 V
D 12.0 V
(Total 1 mark)

Q18. The graph shows the results of an experiment which was carried out to investigate the relationship between the charge Q stored by a capacitor and the $p d V$ across it.

Which one of the following statements is not correct?
A The energy stored can be calculated by finding the area under the line.
B If a capacitor of smaller capacitance had been used the gradient of the graph would be steeper.

C If Q were doubled, the energy stored would be quadrupled.
D The gradient of the graph is equal to the capacitance of the capacitor.

Q19. A $10 \mu \mathrm{~F}$ capacitor is fully charged to a pd of 3.0 kV . The energy stored in the capacitor can be used to lift a load of 5.0 kg through a vertical height h.

What is the approximate value of h ?
A $\quad 0.03 \mathrm{~mm}$
B $\quad 0.9 \mathrm{~mm}$
C $\quad 0.3 \mathrm{~m}$
D $\quad 0.9 \mathrm{~m}$

Q20. A $400 \mu \mathrm{~F}$ capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in $\mathbf{2 0} \mathrm{s}$. What current is being used to charge the capacitor?

A $\quad 5 \mu \mathrm{~A}$
B $\quad 20 \mu \mathrm{~A}$
C $\quad 40 \mu \mathrm{~A}$
D $\quad 80 \mu \mathrm{~A}$

Q21. A capacitor of capacitance C stores an amount of energy E when the pd across it is V. Which line, A to D, in the table gives the correct stored energy and pd when the charge is increased by 50% ?

	energy	pd
A	1.5 E	1.5 V
B	1.5 E	2.25 V
C	2.25 E	1.5 V
D	2.25 E	2.25 V

Q22. A capacitor of capacitance C discharges through a resistor of resistance R.
Which one of the following statements is not true?

A The time constant will decrease if \boldsymbol{C} is increased.

B The time constant will increase if R is increased.

C After charging to the same voltage, the initial discharge current will increase if R is decreased.

D After charging to the same voltage, the initial discharge current will be unaffected if C is increased.

Q23. The graph shows how the charge on a capacitor varies with time as it is discharged through a resistor.

What is the time constant for the circuit?
A $\quad 3.0 \mathrm{~s}$
B $\quad 4.0 \mathrm{~s}$
C $\quad 5.0 \mathrm{~s}$
D $\quad 8.0$ s
(Total 1 mark)

Q24. The graph shows how the charge stored by a capacitor varies with the pd applied across it.

Which line, A to D, in the table gives the capacitance and the energy stored when the potential difference is 5.0 V ?

	capacitance $/ \mu \mathrm{F}$	energy stored/ $\mu \mathrm{J}$
A	2.0	25
B	2.0	50
C	10.0	25
D	10.0	50

(Total 1 mark)

Q25. A 10 mF capacitor is charged to 10 V and then discharged completely through a small motor. During the process, the motor lifts a weight of mass 0.10 kg . If 10% of the energy stored in the capacitor is used to lift the weight, through what approximate height will the weight be lifted?

A $\quad 0.05 \mathrm{~m}$

B $\quad 0.10 \mathrm{~m}$

C $\quad 0.50 \mathrm{~m}$

D $\quad 1.00 \mathrm{~m}$
(Total 1 mark)

Q26. A $1 \mu \mathrm{~F}$ capacitor is charged using a constant current of $10 \mu \mathrm{~A}$ for $\mathbf{2 0}$ s. What is the energy finally stored by the capacitor?

A $\quad 2 \times 10^{-3} \mathrm{~J}$

B $\quad 2 \times 10^{-2} \mathrm{~J}$

C $\quad 4 \times 10^{-2} \mathrm{~J}$

D $\quad 4 \times 10^{-1} \mathrm{~J}$

Q27. A 2.0 mF capacitor, used as the backup for a memory unit, has a potential difference of 5.0 V across it when fully charged. The capacitor is required to supply a constant current of $1.0 \mu \mathrm{~A}$ and can be used until the potential difference across it falls by 10%. How long can the capacitor be used for before it must be recharged?

A $\quad 10 \mathrm{~s}$
B $\quad 100 \mathrm{~s}$
C $\quad 200$ s
D $\quad 1000 \mathrm{~s}$

Q28. When switch S in the circuit is closed, the capacitor C is charged by the battery to a pd V_{0}. The switch is then opened until the capacitor pd decreases to $0.5 V_{0}$, at which time S is closed again. The capacitor then charges back to V_{0}.

Which graph best shows how the pd across the capacitor varies with time, t, after S is opened?

(Total 1 mark)

Q29. When a capacitor discharges through a resistor it loses 50% of its charge in 10 s. What is the time constant of the capacitor-resistor circuit?

A $\quad 0.5 \mathrm{~s}$
B $\quad 5 \mathrm{~s}$
C $\quad 14 \mathrm{~s}$

D $\quad 17 \mathrm{~s}$

Q30. The graph shows how the potential difference across a capacitor varies with the charge stored by it.

Which one of the following statements is correct?
A The gradient of the line equals the capacitance of the capacitor.
B The gradient of the line equals the energy stored by the capacitor.
C The reciprocal of the gradient equals the energy stored by the capacitor.
D The reciprocal of the gradient equals the capacitance of the capacitor.

Q31. An initially uncharged capacitor of capacitance $\mathbf{1 0} \mu \mathrm{F}$ is charged by a constant current of $\mathbf{2 0 0} \mu \mathrm{A}$. After what time will the potential difference across the capacitor be 2000 V ?

A 50 s
B $\quad 100 \mathrm{~s}$
C 200 s
D 400 s

Q32. A $1000 \mu \mathrm{~F}$ capacitor, X , and a $100 \mu \mathrm{~F}$ capacitor, Y , are charged to the same potential difference. Which row, A to D, in the table gives correct ratios of charge stored and energy stored by the capacitors?

	eharge stored by \mathbf{X} eharge stored by \mathbf{Y}	energy stored by \mathbf{X} energy stored by \mathbf{Y}
A	1	1
B	1	10
C	10	1
D	10	10

