Q1. A $1000 \mu \mathrm{~F}$ capacitor, initially uncharged, is charged by a steady current of $50 \mu \mathrm{~A}$. How long will it take for the potential difference across the capacitor to reach 2.5 V ?

A 20 s
B 50 s
C $\quad 100 \mathrm{~s}$
D $\quad 400 \mathrm{~s}$
(Total 1 mark)

Q2. In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance $50 \mu \mathrm{~F}$ is charged to 30 kV . If the bank of capacitors could be discharged completely in 5.0 m s what would be the mean power delivered?

A $\quad 22 \mathrm{~kW}$
B $\quad 110 \mathrm{~kW}$
C \quad. .5 MW
D \quad 9.0 MW

Q3. $\quad \mathrm{A} 400 \mu \mathrm{~F}$ capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in 20 s . What current is being used to charge the capacitor?

A $\quad 5 \mu \mathrm{~A}$
B $\quad 20 \mu \mathrm{~A}$
C $\quad 40 \mu \mathrm{~A}$
D $\quad 80 \mu \mathrm{~A}$
(Total 1 mark)

Q4.A $1000 \mu \mathrm{~F}$ capacitor and a $10 \mu \mathrm{~F}$ capacitor are charged so that the potential difference across each of them is the same. The charge stored in the $1000 \mu \mathrm{~F}$ capacitor is Q_{1} and the charge stored in the $10 \mu \mathrm{~F}$ capacitor is Q_{2}.

What is the ratio $\frac{Q_{1}}{Q_{2}}$?

A 100
B 10
C 1
D $\frac{1}{100}$

Q5. A $1.0 \mu \mathrm{~F}$ capacitor is charged by means of a constant current of $10 \mu \mathrm{~A}$ for 20 s . What is the energy finally stored in the capacitor?

A $\quad 4.0 \times 10^{-4} \mathrm{~J}$
B $\quad 2.0 \times 10^{-3} \mathrm{~J}$
C $\quad 2.0 \times 10^{-2} \mathrm{~J}$
D $\quad 4.0 \times 10^{-2} \mathrm{~J}$

Q6. In the circuit shown, the capacitor C is charged to a potential difference V when the switch S is closed.

Which line, \mathbf{A} to \mathbf{D}, in the table gives a correct pair of graphs showing how the charge and current change with time after S is closed?

graph 2 time

	charge	current
A	graph 1	graph 1
B	graph 1	graph 2
C	graph 2	graph 2
D	graph 2	graph 1

(Total 1 mark)

Page 5

Q7. The graph shows how the charge stored by a capacitor varies with the potential difference across it as it is charged from a 6 V battery.
charge $/ \mu \mathrm{C}$

Which one of the following statements is not correct?
A The capacitance of the capacitor is $5.0 \mu \mathrm{~F}$.
B When the potential difference is 2 V the charge stored is $10 \mu \mathrm{C}$.
C When the potential difference is 2 V the energy stored is $10 \mu \mathrm{~J}$.
D When the potential difference is 6 V the energy stored is $180 \mu \mathrm{~J}$.
(Total 1 mark)

Q8. A capacitor of capacitance C discharges through a resistor of resistance R. Which one of the following statements is not true?

A The time constant will increase if R is increased.
B The time constant will decrease if C increased.
C After charging to the same voltage, the initial discharge current will increase if R is decreased.

D After charging to the same voltage, the initial discharge current will be unaffected if C is increased.

Q9. A 10 mF capacitor is charged to 10 V and then discharged completely through a small motor. During this process, the motor lifts a weight of mass 0.10 kg . If 10% of the energy stored in the capacitor is used to lift the weight, through what approximate height will the weight be lifted?

A $\quad 0.05 \mathrm{~m}$
B 0.10 m
C $\quad 0.50 \mathrm{~m}$
D $\quad 1.00 \mathrm{~m}$
(Total 1 mark)

Q10. A capacitor of capacitance $15 \mu \mathrm{~F}$ is fully charged and the potential difference across its plates is 8.0 V . It is then connected into the circuit as shown.

The switch S is closed at time $t=0$. Which one of the following statements is correct?

A The time constant of the circuit is 6.0 ms .

B \quad The initial charge on the capacitor is $12 \mu \mathrm{C}$.
C After a time equal to twice the time constant, the charge remaining on the capacitor is $Q_{0} \mathrm{e}^{2}$, where Q_{0} is the charge at time $t=0$.

D After a time equal to the time constant, the potential difference across the capacitor is 2.9 V .
(Total 1 mark)

Q11.A $1 \mu \mathrm{~F}$ capacitor is charged using a constant current of $10 \mu \mathrm{~A}$ for 20 s . What is the energy finally stored by the capacitor?

A $\quad 2 \times 10^{-3} \mathrm{~J}$
B $2 \times 10^{-2} \mathrm{~J}$
C $4 \times 10^{-2} \mathrm{~J}$
D $4 \times 10^{-1} \mathrm{~J}$
(Total 1 mark)

Q12.

A capacitor of capacitance $10 \mu \mathrm{~F}$ is fully charged through a resistor R to a p.d. of 20 V using the circuit shown. Which one of the following statements is incorrect?

A The p.d. across the capacitor is 20 V .
B The p.d. across the resistor is 0 V .
C The energy stored by the capacitor is 2 mJ .
D The total energy taken from the battery during the charging process is 2 mJ .

Q13.A capacitor of capacitance C stores an amount of energy E when the pd across it is V. Which line, \mathbf{A} to \mathbf{D}, gives the correct stored energy and pd when the charge is increased by 50% ?

	energy	p.d.
A	$1.5 E$	1.5 V
B	$2.25 E$	1.5 V
C	$1.5 E$	2.25 V
D	$2.25 E$	2.25 V

(Total 1 mark)

Q14.In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance $50 \mu \mathrm{~F}$ is charged to 30 kV . If the bank of capacitors could be discharged completely in 5.0 ms what would be the mean power delivered?

A \quad 9.0 MW
B $\quad 4.5 \mathrm{MW}$

C $\quad 110 \mathrm{~kW}$
D $\quad 22 \mathrm{~kW}$
(Total 1 mark)

Q15. Which of the following does not give a value in seconds?

A capacitance \times resistance
B $\frac{1}{\text { frequency }}$

C half-life
D $\frac{\text { power }}{\text { work }}$

Q16.The graph shows the charge stored in a capacitor as the voltage across it is varied.

The energy stored, in $\mu \mathrm{J}$, when the potential difference across the capacitor is 5 V , is

A 25

B 50

C 100

D 200

Q17.A capacitor is first charged through a resistor and then discharged through the same resistor.
The magnitude of which one of the following quantities varies with time in the same way during both charging and discharging?

A Energy stored
B Current
C Potential difference
D Charge
(Total 1 mark)

Q18.The graph shows the variation of potential difference V with time t across a $470 \mu \mathrm{~F}$ capacitor discharging through a resistor.

The resistance of the resistor is approximately
A 900Ω
B 1300Ω
C 1900Ω
D 4700Ω

