- M1.(a) (i) ultraviolet / UV / UV light / ultra(-)violet ✓
 - (ii) <u>electron(</u> in ground state) has moved / in to higher (energy) level / shell / orbital / state OR up level / shell / orbital / state ✓

 Ignore reference to photons
 - (iii) (free) electrons collide with orbital electrons / mercury electrons / electrons in atom ✓ transferring energy ✓
 Ignore any reference to photons
 - (iv) (mercury) atoms have discrete / fixed / specific energy levels ✓ when electrons change levels they lose an exact / fixed / specific / discrete / set amount of energy OR photons emitted with exact / fixed / specific / discrete / set amount of energy ✓ (leading to photons of) fixed / particular / certain / discrete / specific / unique frequencies ✓
 Each mark independent

Don't accept characteristic for 3rd mark

- (b) (i) (use of $\lambda = c/f$) $f = 3 \times 10^{\circ} / (254 \times 10^{-\circ}) \checkmark$ $f = 1.18 \times 10^{1\circ} (Hz) \checkmark$ AE penalty if give answer to 1 sig fig
 - (ii) (use of E = hf) $E = 6.63 \times 10^{-94} \times 1.18 \times 10^{15} = 7.82 \times 10^{-19} \text{ J}$ $E = 7.82 \times 10^{-19} / 1.6 \times 10^{-19} \text{ J} = 4.9 (4.875) \text{ eV}$ CE part (i) Range 4.8 - 5.0 acceptable

2

1

1

2

3

2

(c) coating <u>absorbs</u> photons / uv light ✓ and re-emits (photons) of low(er) energy / long(er) wavelength / low(er) frequency ✓

Ignore any description of mechanism

[13]

M2. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) **or** most stable (state) they (are in their ground state) ✓

1

(ii) in either case an electron receives (exactly the right amount of) energy ✓ excitation promotes an (orbital) electron to a higher energy/up a level ✓ ionisation occurs (when an electron receives enough energy) to leave the atom ✓

3

(b) electrons occupy discrete energy levels ✓
and need to absorb an exact amount of/enough energy to move to a higher level ✓
photons need to have certain frequency to provide this energy or e = hf ✓
energy required is the same for a particular atom or have different energy levels ✓
all energy of photon absorbed ✓
in 1 to 1 interaction or clear a/the photon and an/the electrons ✓

4

(c) energy = $13.6 \times 1.60 \times 10^{-19} = 2.176 \times 10^{-18}$ (J) \checkmark $hf = 2.176 \times 10^{-18} \checkmark$ $f = 2.176 \times 10^{-18} \div 6.63 \times 10^{-34} = 3.28 \times 10^{15} \text{ Hz } \checkmark 3 \text{ sfs } \checkmark$

[12]

M3. (a) (i) an electron/atom is at a higher level than the ground state (1)or electron jumped/moved up to another/higher level

1

(ii) electrons (or electric current) flow through the tube (1) and collide with orbiting/atomic electrons or mercury atoms (1) raising the electrons to a higher level (in the mercury atoms) (1)

3

(iii) photons emitted from mercury atoms are in the **ultra violet** (spectrum) **or** high energy photons **(1)**

these photons are absorbed by the powder **or** powder changes frequency/wavelength **(1)**

and the powder emits photons in the visible spectrum (1)

incident photons have a variety of different wavelengths (1)

max 3

(b) (i) (use of E = hf)

$$-0.26 \times 10^{-18} - 0.59 \times 10^{-18}$$
 (1) = 6.63 × 10⁻³⁴ × f(1)

$$f = 0.33 \times 10^{-18}/(6.63 \times 10^{-34}) = 5.0 \times 10^{14} \text{ (Hz) (1)}$$

3

2

(ii) one arrow between n = 3 and n = 2 (1) in correct direction (1)

[12]

M4. (a) lowest energy state/level that the electron can occupy or state in which electron needs most energy to be released

B1

1

(b) (i) force =
$$mv^2/r$$
 or $mr\omega^2$ and $v = r\omega$

В1

$$8.1 \times 10^{-8} = 9.1 \times 10^{-31} \times v^2/5.3 \times 10^{-11}$$
 or $(v^2 =) 4.72 \times 10^{12}$ seen

В1

$$2.17 \times 106 \text{ (m s}^{-1})$$

B1

(ii)
$$\lambda = h/mv \text{ or } 6.6 \times 10^{-34}/9.1 \times 10^{-31} \times 2.2 \times 10^{6}$$

C1

7

$$3.3 \times 10^{-10} \text{ m}$$

Α1

(iii) circumference =
$$2\pi 5.3 \times 10^{-11} = 3.3 \times 10^{-10} \text{ m}$$

M1

1 (allow e.c.f. from (ii))

Α1

(c) (i)
$$1.9(4) \times 10^{-18} \text{ J}$$

В1

(ii)
$$5.6 \times 10^{-19} \text{ J (e.c.f. } 2.5 \times 10^{-18} - \text{their (i))}$$

В1

(iii) energy difference $E = 3 \times 10^{-19} \text{ J}$ (condone any difference)

C1

 $E = hc/\lambda$ or E = hf and $c=f\lambda$

or their E = $6.6 \times 10^{-34} \times 3.0 \times 108/\lambda$

C1

6.6 or 6.7 × 10⁻⁷ m

A1

[13]

5

M5.A

[1]