M1.(a) (i) ultraviolet / UV / UV light / ultra(-)violet \checkmark
(ii) electron(in ground state) has moved / in to higher (energy) level / shell / orbital / state OR up level / shell / orbital / state

Ignore reference to photons
(iii) (free) electrons collide with orbital electrons / mercury electrons / electrons in atom transferring energy

Ignore any reference to photons
(iv) (mercury) atoms have discrete / fixed / specific energy levels when electrons change levels they lose an exact / fixed / specific / discrete / set amount of energy OR photons emitted with exact / fixed / specific / discrete / set amount of energy (leading to photons of) fixed / particular / certain / discrete / specific / unique frequencies

Each mark independent
Don't accept characteristic for 3 ${ }^{\text {d }}$ mark
(b) (i) (use of $\lambda=c / f$)
$f=3 \times 10^{8} /\left(254 \times 10^{-9}\right)$
$f=1.18 \times 10^{15}(\mathrm{~Hz}) \checkmark$
AE penalty if give answer to 1 sig fig
(ii) (use of $E=h f$)
$E=6.63 \times 10^{34} \times 1.18 \times 10^{15}=7.82 \times 10^{-19} \mathrm{~J}$ J
$E=7.82 \times 10^{-19} / 1.6 \times 10^{-19} \checkmark=4.9(4.875) \mathrm{eV}$
CE part (i)
Range 4.8-5.0 acceptable
(c) coating absorbs photons / uv light and re-emits (photons) of low(er) energy / long(er) wavelength / low(er) frequency \checkmark

Ignore any description of mechanism

M2. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state)
(ii) in either case an electron receives (exactly the right amount of) energy excitation promotes an (orbital) electron to a higher energy/up a level ionisation occurs (when an electron receives enough energy) to leave the atom
(b) electrons occupy discrete energy levels
and need to absorb an exact amount of/enough energy to move to a higher level photons need to have certain frequency to provide this energy or $\mathrm{e}=\mathrm{hf}$ energy required is the same for a particular atom or have different energy levels all energy of photon absorbed
in 1 to 1 interaction or clear a/the photon and an/the electrons
(c) energy $=13.6 \times 1.60 \times 10^{-19}=2.176 \times 10^{-18}(\mathrm{~J})$
$h f=2.176 \times 10^{-18}$
$f=2.176 \times 10^{-18} \div 6.63 \times 10^{-34}=3.28 \times 10^{15} \mathrm{~Hz} \checkmark 3 \mathrm{sfs}$

M3. (a) (i) an electron/atom is at a higher level than the ground state (1) or electron jumped/moved up to another/higher level
(ii) electrons (or electric current) flow through the tube (1) and collide with orbiting/atomic electrons or mercury atoms (1) raising the electrons to a higher level (in the mercury atoms) (1)
(iii) photons emitted from mercury atoms are in the ultra violet (spectrum) or high energy photons (1)
these photons are absorbed by the powder or powder changes frequency/wavelength (1)
and the powder emits photons in the visible spectrum (1)
incident photons have a variety of different wavelengths (1)
$\max 3$
(b) (i) (use of $E=h f$)
$-0.26 \times 10^{-18}-0.59 \times 10^{-18}(\mathbf{1})=6.63 \times 10^{-34} \times f(\mathbf{1})$
$f=0.33 \times 10^{-18} /\left(6.63 \times 10^{-24}\right)=5.0 \times 10^{14}(\mathrm{~Hz})(1)$
(ii) one arrow between $\mathrm{n}=3$ and $\mathrm{n}=2$ (1) in correct direction (1)

M4. (a) lowest energy state/level that the electron can occupy or state in which electron needs most energy to be released
or the level of an unexcited electron (not lowest orbit)
(b) (i) force $=m v^{2} / r$ or $m r \omega^{2}$ and $v=r \omega$

$$
\begin{aligned}
& 8.1 \times 10^{-8}=9.1 \times 10^{-31} \times v^{2} / 5.3 \times 10^{-11} \\
& \text { or }\left(v^{2}=\right) 4.72 \times 10^{12} \text { seen }
\end{aligned}
$$

$2.17 \times 106\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(ii) $\quad \lambda=h / m v$ or $6.6 \times 10^{-34} / 9.1 \times 10^{-31} \times 2.2 \times 10^{6}$

C1
$3.3 \times 10^{-10} \mathrm{~m}$
A1
(iii) circumference $=2 \pi 5.3 \times 10^{-11}=3.3 \times 10^{-10} \mathrm{~m}$

M1
1 (allow e.c.f. from (ii))
(c) (i) $1.9(4) \times 10^{-18} \mathrm{~J}$
(ii) $5.6 \times 10^{-19} \mathrm{~J}$ (e.c.f. 2.5×10^{-18} - their (i))
(iii) energy difference $E=3 \times 10^{-19} \mathrm{~J}$
(condone any difference)

C1

$E=\mathrm{hc} / \lambda$ or $E=\mathrm{hf}$ and $\mathrm{c}=\mathrm{f} \lambda$
or their $E=6.6 \times 10^{-34} \times 3.0 \times 108 / \lambda$
C1
6.6 or $6.7 \times 10^{-7} \mathrm{~m}$

A1

