Q1. The Boolean equation for a particular logic circuit with inputs A and B and output Q is:

$$Q = (A.B) + (\overline{A}.\overline{B})$$

(a) The table below shows intermediate logic signals for the circuit, and the overall output, Q, for all combinations of the inputs A and B.

Complete the missing two entries in the truth table.

Α	В	A	В	A.B	A.B	Q
0	0	1	1	0	1	
0	1	1	0	0	0	0
1	0	0	1	0		0
1	1	0	0	1	0	1

(1)

(b) Complete the diagram in the figure below to show the logic circuit that has the same function as the Boolean equation given above. Your circuit should contain only **two** AND gates, **two** NOT gates, and **one** OR gate.

A 0	-
-----	---

----- Q

(Total 4 marks)

Q2.A fridge is fitted with a temperature-sensing unit to indicate whether the temperature inside the fridge is too high, too low, or at a safe temperature.

The system consists of a temperature sensor that produces a 2-bit binary output, a logic circuit and a low current, common cathode 7-segment display.

Figure 1 shows a block diagram of the system.

Figure 1

Table 1 shows the operation of the system.

Table 1

Fridge temperature	Temperature sensor output		7-segment display
	X	Y	output
< 3 °C	0	0	L
3 °C to 4 °C	0	1	S
4 °C to 5 °C	1	0	S
> 5 °C	1	1	Н

Key	
L = low	
S = safe	
H = high	

(a) Complete **Table 2** to show the logic signals required on lines a to g to display the specified characters.

Table 2

X	Y	а	b	С	d	e	f	g	Display
0	0								L
0	1								S
1	0								S
1	1								Н

Circle the single logic gate which would generate the required signal for segment **a**. (b) **AND EXOR** OR NAND NOR NOT (1) (c) The LEDs in the 7-segment display must be protected by current limiting resistors. Figure 2 shows two methods, A and B, of connecting current limiting resistors. Figure 2 method B method A а а а а b b lb C C common common d d е е g f f g g 0 V (i) State one disadvantage of method A. (1) Calculate the value of the current limiting resistors required in **method B** to (ii) limit the current in each segment to 20 mA. Assume the voltage from the logic circuit is 5 V and the forward voltage drop across each LED in the 7-segment display is 2.2 V.

(iii) Circle the appropriate value for these resistors from the following list of E24 resistors.

(2)

(1) (Total 8 marks)

(3)

Q3. The diagram shows a logic circuit with three inputs ${\bf A}, {\bf B}$ and ${\bf C}.$

(a) Write the Boolean expressions for the signals at the intermediate points D, E, and G in terms of the inputs A, B and C only.

D

E

G

(b) Complete the truth table below for the logic signals at the intermediate points ${f D},\,{f E}$ and ${f G}.$

Inputs			Intermediate points				
C	В	A	D	E	G		

0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(5) (Total 8 marks)

Q4.Figure 1 shows a simplified diagram of a road safety system for traffic travelling towards a road tunnel. The tunnel is too narrow for two-way traffic and too low for lorries.

Figure 1

C and **L** are laser beam sensors placed at different heights on the road just before the tunnel. When a beam is broken, the sensor produces a logic 1.

Cars will break the beam at sensor **C only**. Lorries will break the beams at both sensor **L** and sensor **C**.

M is an electronic message display that tells lorries to take a diversion. The message display lights up when it receives a logic 1.

T is a sensor buried in the road inside the tunnel. It produces a logic 1 when an oncoming car is in the tunnel.

The red stop light **R** comes on when a lorry is detected or when there is an oncoming car in the tunnel. **R** will light up when it receives a logic 1.

The green go light **G** comes on when a car is detected and there are no oncoming cars in the tunnel. **G** will light up when it receives a logic 1.

(a) Complete the truth table.

Some of the data has already been entered for you.

	Input		0	utput	
Sensor T	Sensor C	Sensor L	Message display M	Red stop light R	Green go light G
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0		0	
0	1	1		1	
1	0	0		1	
1	0	1	0	1	0
1	1	0		1	
1	1	1		1	

(b) Write the simplest Boolean expression for the red stop light **R** in terms of **T**, **C** and **L**.

(4)

(c) The expression for the green go light **G** could be written as $\mathbf{G} = \overline{I} \cdot (\overline{C} + \overline{L})$ Draw on **Figure 2** the logic diagram for this expression using only NOT, AND and OR gates.

(3) (Total 9 marks)

Q5. As part of his project, a student constructs the following logic circuit.

(a) Write down the Boolean expressions for:

(b) Write down the Boolean expression for Q in terms of D and E.

(c) Complete the truth table below for the logic circuit above.

Α	В	С	D	E	Q
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(4)

(d) His supervisor suggests that the logic circuit can be simplified. What single logic gate would have the same function as the whole circuit above?

.....

(Total 10 marks)

Q6.A student constructs a circuit from the following logic diagram.

(a) Complete the truth table below for this logic diagram.

Α	В	С	D	q
0	0			

Page 9

0	1		
1	0		
1	1		

(3)

(b)	Write down Boolean expressions for the logic signals at C, D and Q in terms of the
	inputs A and B.

C)	what single logic gate could perform the function of the whole circuit above?	
		(1)
	·	-` :

(Total 8 marks)