M1.(a) The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system) ✓

Do not accept 'force' in place of 'torque'

(b) *I* is the sum of the *m r*² products for point masses *m* at radius *r* ✓ Or WTTE Not *m* is the mass and *r* the radius – must refer to point or small masses or distribution of mass

OR

 $\Sigma m r^2$ with *m* and *r* defined

OR

I is a measure of the mass and the way the mass is distributed about an axis

1

1

1

More of the satellite's mass is at greater radius \checkmark

(Small change in r) gives large change in r^{e} , hence large change in I

OR even though *m* of panels is small, much of *m* is at a greater radius and radius is squared \checkmark

For 2^{nd} mark must refer to effect of r^2 .

(c) Angular momentum = 110 × 5.2 = 572 ✓

N m s **OR** kg m² s⁻¹ ✓ accept kg m² rad s⁻¹ 1

1

1

(d) (Use of conservation of ang momtm) 572 = 230 × ω_2 \checkmark

$$\omega_2 = 572 / 230 = 2.49 \text{ rad s}^{-1}$$

M2.(a)
$$\frac{3.5}{(2\pi \times 0.088)} = 6.3 \text{ rev}$$

 $6.3 \times 2\pi$ = 39.8 rad or 40 rad \checkmark

OR <u>3.5</u> 0.088= 39.8 or 40 rad ✓ If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion

(b)
$$\omega = v/r = 2.2 / 0.088 = 25 \text{ rad s}^{-1} \checkmark$$

(c) (i)
$$E = \frac{1}{2}l\omega^2 + \frac{1}{2}mv^2 + mgh$$

 $= (0.5 \times 7.4 \times 25^2)$
 $+ (0.5 \times 85 \times 2.2^2)$
 $+ (85 \times 9.81 \times 3.5)$
 $= 2310 \checkmark$
 $+ 206 \checkmark$
 $+ 2920 \checkmark$
(= 5440 J or 5400 J)
CE from 1b
 $\frac{1}{2}l\omega^2 + \frac{1}{2}mv^2 = 2310 + 210 = 2520 J$
 $\frac{1}{2}l\omega^2 + mgh = 2310 + 2920 = 5230 J$
 $\frac{1}{2}mv^2 + mgh = 210 + 2920 = 3130 J$
Each of these is worth 2 marks

(ii) Work done against friction = $T\theta$ = 5.2 × 40 = 210J \checkmark Total work done = W = 5400 + 210 = 5600J \checkmark 2 sig fig \checkmark 3

[8]

1

1

1

1

Time of travel = distance / average speed = 3.5 / 1.1 = 3.2s \checkmark

[10]

2

2

M3.(a) Use of $I = \Sigma mr^2$ or expressed in words \checkmark

 $P_{\text{ave}} = 3.2 = 1750 \text{ W}$

 $P_{\rm max} = P_{\rm ave} \times 2 = 3500 \, {\rm W} \, \checkmark$

= 5600 / 40 = 140 N m 🖌

OR accelerating torque = $T = W/\theta$

 $P = T \omega_{max} = 140 \times 25 = 3500 \text{ W } \checkmark$ CE from ii

1780 W if 5650 J used

(d)

With legs close to chest, more mass at smaller r, so I smaller \checkmark

(b) (i) Angular momentum is conserved / must remain constant OR no external torque acts √ WTTE

as *I* decreases, ω increases and vice versa to maintain *I* ω constant \checkmark OR as *I* varies, ω must vary to maintain *I* ω constant

2

(ii) (Angular velocity increases initially then decreases (as he straightens up to enter the water)).
 No mark for just ang. vel starts low then increases then decreases, i.e. for describing ω only at positions 1,2 and 3.

With one detail point e.g. 🗸

 Angular velocity when entering water is greater than at time t = 0 s.

- Angular velocity increases, decreases, increases, decreases
- Maximum angular velocity at *t* = 0.4 s
- Greatest rate of change of ang. vel. is near the start
- Angular velocity will vary as inverse of M of I graph

(c) angular. momentum = 10.9 × 4.4 = 48 (N m s) ✓

 $(\omega_{\max} \text{ occurs at minimum } I)$ Allow 6.3 to 6.5. If out of tolerance e.g. 6.2 give AE for final answer

minimum I = 6.4 kg m² (at 0.4 s) \checkmark

 $6.4 \times \omega_{\text{max}} = 48$ leading to

 ω_{max} = 7.5 rad s⁻¹ \checkmark

3 (Total 8 marks)

1