M1.(a)

	223 88 R a	224 88 R a	225 88 R a	226 ⁸⁸ R a
lsotope with smallest mass number	(✓)			
Isotope with most neutrons in nucleus				~
Isotope with nucleus that has highest specific charge	1			
Isotope that decays by β^{-225} decay to form ^{89}Ac			1	
Isotope that decays by alpha $$220$\\ decay to form $86Rn$$		\$		

one mark for each correct row (ignore first row as already ticked)

allow cross instead of tick and ignore any crossed out ticks if more than one tick in a row then no mark

(b) (i) the atom has lost two electrons \checkmark

1

4

(ii) (use of specific charge = charge \div mass) mass = $3.2 \times 10^{-19} \div 8.57 \times 10^5 = 3.734 \times 10^{-25}$ (kg) mass number = $3.734 \times 10^{-25} \div 1.66 \times 10^{-27}$ \checkmark (= 225) 225 hence (88) Ra OR 225 \checkmark \checkmark OR calculate specific charge for each isotope \checkmark 225 hence (88) Ra OR 225 \checkmark \checkmark ignore any reference to electrons first mark for deduction bald correct answer scores 2 marks

	don't need radium symbol or 88 wrong answer scores zero	3	[8]
M2 .A			[1]
M3 .C			[1]
M4. C			[1]
M5. (a)	95 protons ✓ 241 – 95 = 146 neutrons ✓	1	
(b)	 Beta minus decay. ✓ Marks can be given for a correct equation There is no change in the number of nucleons. The number of protons increases by 1. ✓ Ignore omitted antineutrino. 	1	
	241 A 4	1	

(c) $\begin{array}{ccc} 241 & A & 4\\ 95 & Am \rightarrow & Z & X + & 2 & \alpha \checkmark \end{array}$

1

	Nucleon number = A = $241 - 4 = 237$ Proton number = Z = $95 - 2 = 93$	1
(d)	Ionisation is the removal (or addition) of electrons from (to) an atom or molecule \checkmark	1
(e)	Only a small quantity of material is needed \checkmark The particles it emits do not travel more than a few centimetres \checkmark	1
	Alternative for 2nd mark: Would be stopped before reaching the outside of the detector	1 [10]
M6 .C		[1]
(i) Q / bo	ron / B 🖌	1

(ii) P and R / R and P \checkmark

(iii) R 🗸

M7.(a)

(i)

6 / 14 is smallest fraction / 0.43 smallest ratio / 4.13 × 10⁷ C / kg ✓ Cannot get second mark if not awarded first mark

2

1

(iv)
$${}^{14}_{6}R \rightarrow {}^{14}_{7}X + {}^{0}_{-1}e + \overline{\nu_{(e)}} \checkmark \checkmark \checkmark$$

One mark for each correct symbol on rhs Ignore –ve sign on e. Can have neutrino with 0,0 on answer lines Ignore any subscript on neutrino

(b) (i) repulsive below / at 0.5 fm (accept any value less or equal to 1 fm) ✓ attractive up to / at 3 fm (accept any value between 0.5 and 10 fm) ✓ short range OR becomes zero OR no effect ✓ Can get marks from labelled graph Don't accept negligible for 3rd mark

3

2

3

1

[12]

3

(ii) interaction: electromagnetic / em ✓

(virtual) photon/ $\gamma \checkmark$

M8.(a) (i) protons = $20 \checkmark$ neutrons = $28 \checkmark$ electrons = $18 \checkmark$

> (ii) $2 \times 1.6 \times 10^{-19} = 3.2 \times 10^{-19} \checkmark (C)$ -ve sign loses mark

(iii) specific charge = $3.2 \times 10^{-19} / (48 \times 1.67 \times 10^{-27} + 18 \times 9.11 \times 10^{-31}) \checkmark$

specific charge = 4.0 × 10^e C kg⁻¹ ✓ *Allow 1.66 Allow CE from (ii) First mark is for mass if miss out electron mass and do not justify lose first mark*

[6]

2

M9 .(a)	(i)	neutron ✓ accept symbols symbols e.g. n	1
	(ii)	electron ✓ accept symbols	1
	(iii)	neutron ✓ accept symbols	1
(b)	(i)	antineutrino ✓ V _(e)	1
	(ii)	A=99 ✓ Z= 44 ✓	2
	(iii)	specific charge = 43 × 1.6 × 10 ⁻¹⁹ ✓ / 99 × 1.66 × 10 ⁻²⁷ ✓ specific charge = 4.2 × 10 ⁷ ✓C kg ⁻¹ ✓ <i>Correct answer no working −1</i> <i>If include mass of electrons lose 2 and 3 mark</i>	4 [10]