M1.(a)

	$\begin{gathered} 223 \\ 88 \mathrm{R} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 224 \\ 88 \mathrm{R} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 225 \\ { }_{88} \mathrm{R} \\ \mathrm{a} \end{gathered}$	${ }^{226}$
Isotope with smallest mass number	(\checkmark)			
Isotope with most neutrons in nucleus				\checkmark
Isotope with nucleus that has highest specific charge	\checkmark			
Isotope that decays by β decay to form ${ }^{225} \mathrm{Ac}$			\checkmark	
Isotope that decays by alpha decay to form ${ }^{220} \mathrm{Rn}$		\checkmark		

one mark for each correct row (ignore first row as already ticked)
allow cross instead of tick and ignore any crossed out ticks if more than one tick in a row then no mark
(b) (i) the atom has lost two electrons $\sqrt{ }$
(ii) (use of specific charge $=$ charge \div mass) mass $=3.2 \times 10^{-19} \div 8.57 \times 10^{5}=3.734 \times 10^{-25}(\mathrm{~kg})$ mass number $=3.734 \times 10^{-25} \div 1.66 \times 10^{-27} \quad \checkmark(=225)$ 225
hence ${ }^{(88)} \mathrm{Ra}$ OR $225 \checkmark \checkmark$
OR
calculate specific charge for each isotope \checkmark
225
hence ${ }^{(88)} \mathrm{Ra}$ OR $225 \checkmark \checkmark$
ignore any reference to electrons
first mark for deduction
bald correct answer scores 2 marks

don't need radium symbol or 88

M2.A

M3.C

M4.C

M5.(a) 95 protons \checkmark
$241-95=146$ neutrons
(b) Beta minus decay. \checkmark

Marks can be given for a correct equation

There is no change in the number of nucleons.
The number of protons increases by 1 . \checkmark
Ignore omitted antineutrino.

Nucleon number $=$ A $=241$ - $4=237$

Proton number $=Z=95-2=93$
(d) Ionisation is the removal (or addition) of electrons from (to) an atom or molecule \checkmark
(e) Only a small quantity of material is needed \checkmark

The particles it emits do not travel more than a few centimetres
Alternative for 2nd mark: Would be stopped before reaching the outside of the detector

M6.C
(ii) P and R / R and P
(iii) $R \checkmark$

6 / 14 is smallest fraction / 0.43 smallest ratio / $4.13 \times 10^{7} \mathrm{C} / \mathrm{kg} \checkmark$ Cannot get second mark if not awarded first mark
(iv) ${ }_{6}^{14} R \rightarrow{ }_{7}^{14} X+{ }_{-1}^{0} e+\overline{v_{(e)}} \checkmark \checkmark \checkmark$

One mark for each correct symbol on rhs Ignore -ve sign on e.
Can have neutrino with 0,0 on answer lines Ignore any subscript on neutrino
(b) (i) repulsive below / at 0.5 fm (accept any value less or equal to 1 fm) \checkmark attractive up to / at 3 fm (accept any value between 0.5 and 10 fm) short range OR becomes zero OR no effect \checkmark

Can get marks from labelled graph
Don't accept negligible for $3^{d d}$ mark
(ii) interaction: electromagnetic / em
(virtual) photon $\gamma \checkmark$
[12]

M8.(a) (i) protons $=20 \checkmark$
neutrons $=28 \checkmark$ electrons $=18 \checkmark$
(ii) $2 \times 1.6 \times 10^{-19}=3.2 \times 10^{-19} \quad \checkmark$ (C)
-ve sign loses mark
(iii) specific charge $=3.2 \times 10^{-19} /\left(48 \times ; 1.67 \times 10^{-27}+18 \times 9.11 \times 10^{-31}\right) \checkmark$ specific charge $=4.0 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$

Allow 1.66
Allow CE from (ii)
First mark is for mass if miss out electron mass and do not justify lose first mark

M9.(a) (i) neutron \checkmark
accept symbols
symbols e.g. n
(ii) electron \checkmark
accept symbols
(iii) neutron \checkmark
accept symbols
(b) (i) antineutrino \checkmark
$V_{(e)}$
(ii) $\mathrm{A}=99 \checkmark$
$Z=44$
(iii) specific charge $=43 \times 1.6 \times 10^{-19} \quad \checkmark / 99 \times 1.66 \times 10^{-27}$ specific charge $=4.2 \times 10^{7} \checkmark \mathrm{C} \mathrm{kg}^{-1} \checkmark$

Correct answer no working -1
If include mass of electrons lose 2 and 3 mark

