Q1.(a) Sketch, on **Figure 1**, the current–voltage (IV) characteristic for a filament lamp for currents up to its working power.

Figure 1

(2)

(b)	(i)	State what happens to the resistance of the filament lamp as the current increases.		
			(1)	
	(ii)	State and explain whether a filament lamp is an ohmic or non-ohmic conductor up to its working power.		

(1)

(c) Three identical filament lamps, $P,\,Q$ and R are connected in the circuit shown in Figure 2.

Figure 2.

The filament in lamp ${f Q}$ melts so that it no longer conducts. Explain why lamp ${f P}$				
becomes brighter and lamp ${f R}$ becomes dimmer.				
	(2)			

- (d) A filament lamp, \mathbf{X} , is rated at 60 W 230 V. Another type of lamp, \mathbf{Y} , described as 'energy saving' has the same light intensity output but is rated at 11 W 230 V.
 - (i) Calculate the electrical energy converted by each lamp if both are on for 4 hours a day for a period of 30 days.

(2)

(ii) Suggest why the two lamps can have different power ratings but have the same light intensity output.

.....

(0)
(2)
\-\
(Total 10 marks)
(10ldi 10 ilidiks)

Q2.A 'potato cell' is formed by inserting a copper plate and a zinc plate into a potato. The circuit shown in **Figure 1** is used in an investigation to determine the electromotive force and internal resistance of the potato cell.

Figure 1

a)	State what is meant by electromotive force.			

(b) The plotted points on **Figure 2** show the data for current and voltage that were obtained in the investigation.

Figure 2

(i) Suggest what was done to obtain the data for the plotted points.

(ii) The electromotive force (emf) of the potato cell is 0.89 V. Explain why the voltages plotted on Figure 2 are always less than this and why the difference between the emf and the plotted voltage becomes larger with increasing current.			
		(2)	
		(3)	
(iii)	Use Figure 2 to determine the internal resistance of the potato cell.		
	internal resistance =Ω	(3)	
emitt	udent decides to use two potato cells in series as a power supply for a light ting diode (LED). In order for the LED to work as required, it needs a voltage of ast 1.6 V and a current of 20 mA.		
Expla	ain whether the LED will work as required.		
•••••			

(c)

(Total 11 marks)

Q3.A cable used in high-voltage power transmission consists of six aluminium wires surrounding a steel wire. A cross-section is shown below.

The resistance of a length of 1.0 km of the steel wire is 3.3 Ω . The resistance of a length of 1.0 km of **one** of the aluminium wires is 1.1 Ω .

(a) The steel wire has a diameter of 7.4 mm.Calculate the resistivity of steel. State an appropriate unit.

resistivity = unit

(4)

(b) Explain why only a small percentage of the total current in the cable passes through the steel wire.

.....

.....

(c) The potential difference across a length of 1.0 km of the cable is 75 V.Calculate the total power loss for a 1.0 km length of cable.

Q4.(a) The power P dissipated in a resistor of resistance R is measured for a range of values of the potential difference V across it. The results are shown in the table below.

V/V	$V^{\scriptscriptstyle 2}$ / $V^{\scriptscriptstyle 2}$	P/W
1.00	1.0	0.21
1.71	2.9	0.58
2.25		1.01
2.67		1.43
3.00	9.0	1.80
3.27	10.7	2.18
3.50	12.3	2.43

(i) Complete the table above.

(1)

(3)

(ii) Complete the graph below by plotting the two remaining points and draw a best fit straight line.

(2)

(iii) Determine the gradient of the graph.

gradient =	
	(3)

(iv) Use the gradient of the graph to obtain a value for ${\it R}.$

R =

- (b) The following questions are based on the data in the table above.
 - (i) Determine the value of R when V = 3.50 V.

(1)

(1)

(ii)	The uncertainty in V is \pm 0.01 V. The uncertainty in P is \pm 0.05 W.	
	Calculate the percentage uncertainty in the value of ${\it R}$ calculated in part (1).	
	percentage uncertainty = %	(3)
(iii)	Hence calculate the uncertainty in the value of $\it R$.	
	uncertainty =	(1)
(iv)	State and explain whether the value of ${\it R}$ you calculated in part (1) is	
	consistent with the value of R you determined from the gradient in part (a)(iv).	(2)
	(Total 14 m	arks)