M1.(a) Star much brighter than reflected light from planet
Or
Planet very small and distant - subtends very small angle compared to resolution of telescopes
(c) Light curve showing constant value with dip \checkmark

When planet passes in front of star (as seen from Earth), some of the light from star is absorbed and therefore the amount of light reaching Earth reduced

Apparent magnitude is a measure of the amount of light reaching Earth from the star \checkmark

M2. (a) (use of $m-M=5 \log (d / 10)$ gives)
$3.54-(-20.62)=5 \log (d / 10)(1)$
$d=6.7(9) \times 10^{5} \mathrm{pc}(1)$
(b) use of $\frac{\Delta \lambda}{\lambda}=-\frac{v}{c}$
$\Delta \hat{\lambda}=-\frac{0.21121 \times 105 \times 10^{3}}{3.0 \times 10^{8}}=-7(.4) \times 10^{-5}$

$$
\begin{equation*}
\lambda^{\prime}=0.21121-7(.4) \times 10^{-5}=0.21114 \mathrm{~m} \tag{1}
\end{equation*}
$$

(allow C.E. for incorrect value of $\Delta \lambda$)
(c) $t\left(=\frac{d}{v}\right)=\frac{6.79 \times 10^{5} \times 3.08 \times 10^{16}}{105 \times 10^{3}}$
$=2.0 \times 10^{17} \mathrm{~s}(1)$
$\left(1.99 \times 10^{17} \mathrm{~s}\right)$
(allow C.E. for value of d from (a))

M3. (a) (use of $\frac{\Delta \lambda}{\lambda}=-\frac{v}{c}$ gives) $\frac{(660.86-656.28)}{656.28}=(-) \frac{v}{3.0 \times 10^{8}}$ $v=(-) 2094 \mathrm{~km} \mathrm{~s}^{-1}(1)$
(b) graph to show:
correct plotting of points (1)
straight line through origin (1)
$H=\frac{v}{d}=$ gradient $=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}(1)$
(must show evidence of use of graph in calculation)

M4. (a) (i) correct shape of graph (steeper on left of peak) (1)
(ii) region to left of peak (1)
(iii) ozone (1)
(iv) lower temperature, shifts peak ($\lambda_{\text {max }}$) to longer wavelengths (1) $\lambda_{\max } T=$ constant (1)
(b) (i) (use of $f=\frac{c}{\lambda}$ gives) $f\left(=\frac{3 \times 10^{8}}{2.7}\right)=1.1 \times 10^{8} \mathrm{~Hz}$,
(in range) (1)
(ii) (double) Doppler (1)
(iii) (reflection off moving object gives double Doppler), frequency shift $=150 \mathrm{~Hz}$
$v=\frac{150 \times 3 \times 10^{8}}{1.1 \times 10^{8}}$
(allow C.E. for shift $=300 \mathrm{~Hz}$)
$=4.1 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$ (towards each other) (1)

M5.(a)
$\Delta \lambda=\frac{\lambda v}{c}(1)$
(ii) $\Delta \lambda=-\frac{\lambda v}{c}(\mathbf{1})$
(b) (i) total difference in wavelength $=\frac{2 \lambda v}{c}$

$$
\begin{equation*}
v=\frac{7.8 \times 10^{-12} \times 3.0 \times 10^{8}}{589 \times 10^{-9} \times 2}=1986\left[\text { or } 2.0 \times 10^{3}\right] \mathrm{m} \mathrm{~s}^{-1}(1) \tag{1}
\end{equation*}
$$

(ii) $\quad \omega=\frac{v}{r}=\frac{1986}{7.0 \times 10^{8}}$

$$
=2.8 \times 10^{-6} \mathrm{rad} \mathrm{~s}^{-1}(1)
$$

