(a)	Star much brighter than reflected light from planet \checkmark		
		Or Planet very small and distant – subtends very small angle compared to resolution of telescopes	1
	(b)	Planet and star orbit around common centre of mass that means the star moves towards/away from Earth as planet orbits ✓ Causes shift in wavelength of light received from star ✓	1
	(c)	Light curve showing constant value with dip \checkmark	1
		When planet passes in front of star (as seen from Earth), some of the light from star is absorbed and therefore the amount of light reaching Earth reduced ✓	1
		Apparent magnitude is a measure of the amount of light reaching Earth from the star \checkmark	1
M2		(a) (use of <i>m</i> – <i>M</i> = 5 log(<i>d</i> /10) gives) 3.54 –(–20.62) = 5 log (<i>d</i> /10) (1)	

[6]

2

d = 6.7(9) × 10⁵pc **(1)**

M1.(a)

(b) use of
$$\frac{\Delta \lambda}{\lambda} = -\frac{\nu}{c}$$
 (1)

$$\Delta \lambda = -\frac{0.21121 \times 105 \times 10^{3}}{3.0 \times 10^{8}} = -7(.4) \times 10^{-5}$$

$$\lambda' = 0.21121 - 7(.4) \times 10^{-5} = 0.21114m$$
 (1)
(allow C.E. for incorrect value of $\Delta \lambda$)

2

2

2

3

(c)
$$t\left(=\frac{d}{v}\right) = \frac{6.79 \times 10^5 \times 3.08 \times 10^{16}}{105 \times 10^3}$$
 (1)
= 2.0 × 10¹⁷s (1)
(1.99×10¹⁷s)

[6]

M3. (a) (use of
$$\frac{\Delta \hat{x}}{\hat{x}} = -\frac{\nu}{c}$$
 gives) $\frac{(660.86 - 656.28)}{656.28} = (-)\frac{\nu}{3.0 \times 10^8}$ (1)
 $\nu = (-)2094 \text{ km s}^{-1}$ (1)

(b) graph to show:
correct plotting of points (1)
straight line through origin (1)
$$H = \frac{v}{d}$$
 = gradient = 70 km s⁻¹ Mpc⁻¹ (1)

(must show evidence of use of graph in calculation)

[5]

M4.

(a) (i) correct shape of graph (steeper on left of peak) (1)

- (ii) region to left of peak (1)
- (iii) ozone (1)
- (iv) lower temperature, shifts peak (λ_{max}) to longer wavelengths (1) $\lambda_{max}T$ = constant (1)

max 4

(b) (i) (use of
$$f = \frac{c}{\lambda}$$
 gives) $f \left(= \frac{3 \times 10^8}{2.7} \right) = 1.1 \times 10^8 \text{ Hz},$
(in range) **(1)**

(ii) (double) Doppler (1)

(iii) (reflection off moving object gives double Doppler), frequency shift = 150 Hz

$$v = \frac{150 \times 3 \times 10^8}{1.1 \times 10^8}$$
(1)

(allow C.E. for shift = 300 Hz)

= 4.1×10^2 m s⁻¹ (towards each other) (1)

5

[9]

		$\Delta \lambda = \frac{\lambda v}{2}$ (1)
M5. (a)	(i)	c (1)

(ii)
$$\Delta \lambda = -\frac{\lambda v}{c}$$
 (1)

(b) (i) total difference in wavelength =
$$\frac{2\lambda v}{c}$$
 (1)
 $v = \frac{7.8 \times 10^{-12} \times 3.0 \times 10^8}{589 \times 10^{-9} \times 2} = 1986 \text{ [or } 2.0 \times 10^3 \text{] m s}^{-1}$ (1)

(ii)
$$\omega = \frac{v}{r} = \frac{1986}{7.0 \times 10^8}$$
 (1)

(4) [6]

(2)