M1.C

[1]

M2.A

[1]

M3.C

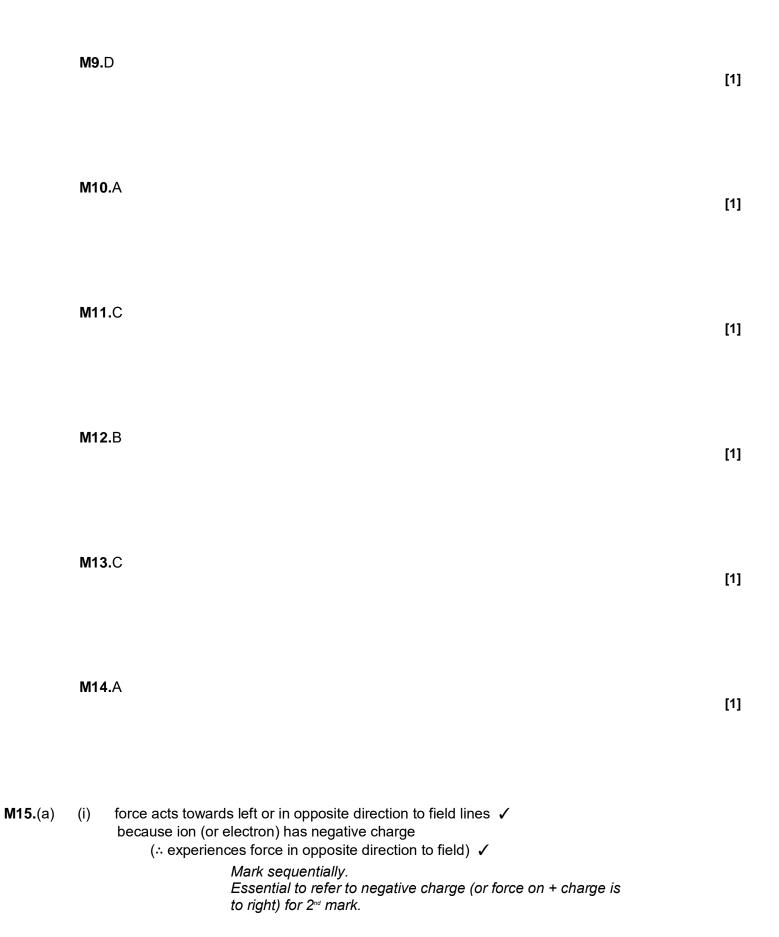
[1]

M4.A

[1]

M5.(a)
$$t = \sqrt{\frac{2s}{g}}$$
 or $4.5 = \frac{1}{2} \times 9.81 \times t^2 \checkmark$
 $t = 0.96 \text{ s}\checkmark$

2


(b) Field strength = $186000 \text{V m}^{-1} \checkmark$ Acceleration = Eq / mor $186000 \times 1.2 \times 10^{-6} \checkmark$ $0.22 \text{ m s}^{-2} \checkmark$

3

(c) 0.10(3)m (allow ecf from (i)) ✓

1

((d)	Force on a particle = <i>mg</i> and		
		acceleration = F/m so always = $g\checkmark$		
		Time to fall (given distance) depends (only) on the distance and acceleration ✓		
		OR:		
		$g = GM/r^2 \checkmark$		
		Time to fall = $\sqrt{2}$ s / g		
		so no m in equations to determine time to fall \checkmark	2	
			-	
((e)	Mass is not constant since particle mass will vary ✓		
		Charge on a particle is not constant ✓		
		Acceleration = Eq/m or $(V/d)(q/m)$ or $Vq/dm \checkmark$		
		<i>E</i> or V/d constant but charge and mass are 'random' variables so q/m will vary (or unlikely to be the same) \checkmark		
			4	[12]
M6. D				[4]
				[1]
M7 D				
M7. B				[1]
M8. D				F47
				[1]

(ii) (use of
$$W = F$$
 s gives) force $F = \frac{4.0 \times 10^{-16}}{63 \times 10^{-3}}$ \checkmark

=
$$6.3(5) \times 10^{-15} (N)$$
 \checkmark

If mass of ion m is used correctly **using algebra** with F = ma, allow both marks (since m will cancel). If numerical value for m is used, max 1.

2

(iii) electric field strength
$$E\left(=\frac{F}{Q}\right) = \frac{6.35 \times 10^{-15}}{3 \times 1.6 \times 10^{-19}} = 1.3(2) \checkmark 10^{4} (N C^{-1}) \checkmark$$

[or
$$\Delta V \left(= \frac{\Delta W}{Q} \right) = \frac{4.0 \times 10^{-16}}{3 \times 1.60 \times 10^{-19}}$$
 (833 V)

$$E\left(=\frac{\Delta V}{d}\right) = \frac{833}{63 \times 10^{-3}} = 1.3(2) \checkmark 10^{4} (V \text{ m}^{-1}) \checkmark]$$

Allow ECF from wrong F value in (ii).

1

(b) (i) (vertically) downwards on diagram ✓ reference to Fleming's LH rule or equivalent statement ✓ Mark sequentially.
 1st point: allow "into the page".

2

(ii) number of free electrons in wire = A × I × number density = 5.1 × 10⁻⁶ × 95 × 10⁻³ × 8.4 × 10²⁸ = 4.1 (4.07) × 10²² ✓ Provided it is shown correctly to at least 2SF, final answer alone is sufficient for the mark. (Otherwise working is mandatory).

1

(iii)
$$B\left(=\frac{F}{Qv}\right) = \frac{1.4 \times 10^{-25}}{1.60 \times 10^{-19} \times 5.5 \times 10^{-6}} \checkmark = 0.16 (0.159) (T) \checkmark$$

[or
$$B \left(= \frac{F}{I \, l} \right) = \frac{1.4 \times 10^{-25} \times 4.07 \times 10^{22}}{0.38 \times 95 \times 10^{-3}} \checkmark = 0.16 (0.158) (T) \checkmark$$
]

In 2nd method allow ECF from wrong number value in (ii).

[10]

M16.B

[1]

M17.A

[1]

M18.D

[1]

M19.(a) (i) required pd (=
$$2.5 \times 10^{6} \times 12 \times 10^{-3}$$
) = $3.0(0) \times 10^{4}$ (V) \checkmark

1

(ii) charge required $Q (= CV) = 3.7 \times 10^{-12} \times 3.00 \times 10^{4} \checkmark$

$$(=1.11 \times 10^{-7} C)$$

Allow ECF from incorrect V from (a)(i).

time taken
$$t \left(= \frac{Q}{I} \right) = \frac{1.11 \times 10^{-7}}{3.2 \times 10^{-8}} = 3.5 \text{ (3.47) (s) } \checkmark$$

2

(b) (i) time increases ✓

(larger C means) more charge required (to reach breakdown pd)

Mark sequentially i.e. no explanation mark if effect is

wrong.

$$t = \frac{CV}{I}$$
 or time \propto capacitance \checkmark

2

(ii) spark is brighter (or lasts for a longer time) ✓

more energy (**or** charge) is stored **or** current is larger *Mark sequentially.*

or spark has more energy ✓

(Total 7 marks)