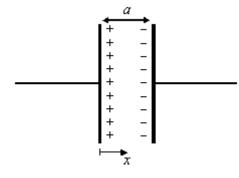
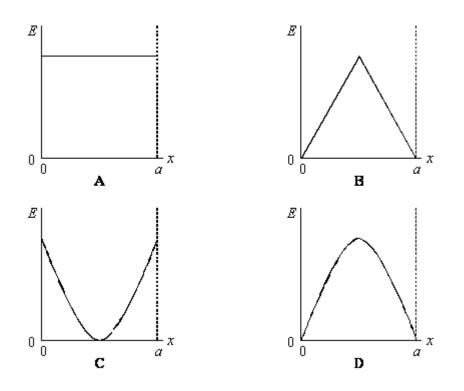

Q1. Which line, **A** to **D**, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field?

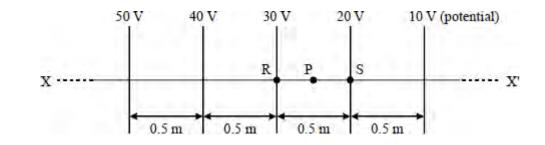

	(a) uniform electric field	(b) uniform magnetic field
В С	circular parabolic	circular parabolic circular parabolic

(Total 1 mark)


Q2. The force between two point charges is *F* when they are separated by a distance *r*. If the separation is increased to 3*r* what is the force between the charges?

Q3.

Two parallel metal plates of separation a carry equal and opposite charges. Which one of the following graphs, **A** to **D**, best represents how the electric field strength *E* varies with the distance x in the space between the plates?



⁽Total 1 mark)

Q4. Two horizontal parallel plate conductors are separated by a distance of 5.0 mm in air. The lower plate is earthed and the potential of the upper plate is + 50 V.

Which line, **A** to **D**, gives correctly the electric field strength, *E*, and the potential, *V*, at a point midway between the plates?

	<i>electric field strength E/</i> V m ⁻¹	potential V/V
Α	1 × 10 ^₄ upwards	25
В	1 × 10⁴ downwards	25
С	1 × 10 ^₄ upwards	50
D	1 × 10 ^₄ downwards	50

The diagram shows how the electric potential varies along a line XX' in an electric field. What will be the electric field strength at a point P on XX' which is mid–way between R and S?

- **A** 5.0 V m⁻¹
- **B** 10 V m⁻¹
- **C** 20 V m⁻¹
- **D** 30 V m⁻¹

(Total 1 mark)

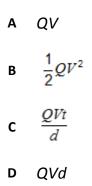
Q5.

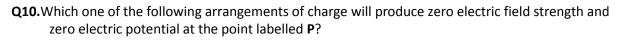
- **Q6.**If the potential difference between a pair of identical, parallel, conducting plates is known, what is the only additional knowledge required to determine the electric field strength between the plates?
 - A the permittivity of the medium between the plates
 - **B** the separation and area of the plates
 - **C** the separation and area of the plates and the permittivity of the medium between the plates
 - **D** the separation of the plates

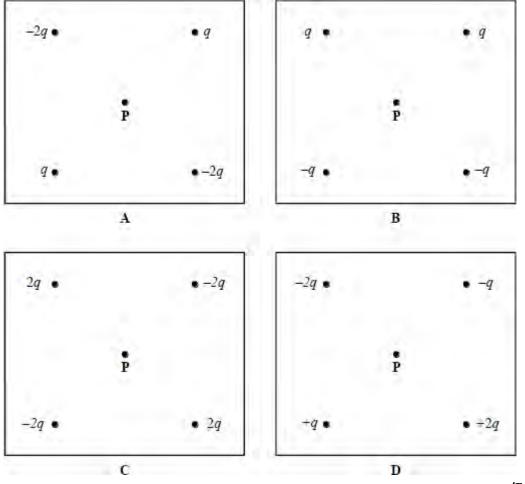
(Total 1 mark)

Q7.Which one of the following statements about *electric field strength* and *electric potential* is **incorrect**?

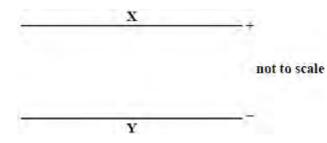
- **A** Electric potential is a scalar quantity.
- **B** Electric field strength is a vector quantity.
- **C** Electric potential is zero whenever the electric field strength is zero.
- **D** The potential gradient is proportional to the electric field strength.

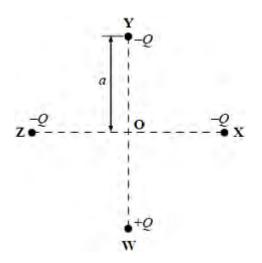

Q8. Which one of the following statements about electric potential and electric field strength is correct?

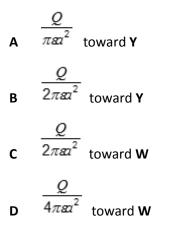

- A Electric potential is zero whenever the electric field strength is zero.
- **B** Electric field strength is a scalar quantity.
- **C** Electric potential is a vector quantity.
- **D** Electric potential due to a point charge varies as \overline{r} where *r* is the distance from the point charge.


1

(Total 1 mark)


Q9.X and Y are two points in an electric field a distance d apart. The potential difference between X andY is V. A particle carrying a charge Q is accelerated by that field from X to Y in a time t. The gain in kinetic energy of the particle is


Q11.An electric field is maintained in the region between two circular parallel metal plates, the separation of which is small compared with their diameter.


Along the line **X** to **Y** between the plates

- A the electric field strength decreases uniformly
- **B** the electric field strength increases uniformly
- **C** the electric field strength increases and then decreases again
- **D** the electric field strength is the same everywhere

Q12. Four point charges W, X, Y and Z are each placed at a distance a from O as shown in the diagram. X, Y and Z each have a charge -Q and W has a charge +Q.

The resultant electric field strength at **O** is

