Q1. Which line, A to $\mathbf{D}$, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field?

|  | (a) uniform electric field | (b) uniform magnetic field |
| :--- | :--- | :--- |
| A | circular | circular |
| B | circular | parabolic <br> circular <br> C |
| parabolic | parabolic |  |
| D | parabolic |  |

Q2. The force between two point charges is $F$ when they are separated by a distance $r$. If the separation is increased to $3 r$ what is the force between the charges?

A $\frac{F}{3 r}$
B $\frac{F}{9 r}$
C $\frac{F}{3}$
D $\frac{F}{9}$

Q3.


Two parallel metal plates of separation a carry equal and opposite charges. Which one of the following graphs, $\mathbf{A}$ to $\mathbf{D}$, best represents how the electric field strength $E$ varies with the distance $x$ in the space between the plates?


Q4. Two horizontal parallel plate conductors are separated by a distance of 5.0 mm in air. The lower plate is earthed and the potential of the upper plate is +50 V .

Which line, A to $\mathbf{D}$, gives correctly the electric field strength, $E$, and the potential, $V$, at a point midway between the plates?

|  | electric field strength $E / \mathrm{V} \mathrm{m}^{-1}$ | potential V/V |
| :---: | :---: | :---: |
| A | $1 \times 10^{4}$ upwards | 25 |
| B | $1 \times 10^{4}$ downwards | 25 |
| C | $1 \times 10^{4}$ upwards | 50 |
| D | $1 \times 10^{4}$ downwards | 50 |

Q5.


The diagram shows how the electric potential varies along a line $X^{\prime}$ in an electric field. What will be the electric field strength at a point P on XX ' which is mid-way between R and S ?

A $\quad 5.0 \mathrm{~V} \mathrm{~m}^{-1}$
B $\quad 10 \mathrm{~V} \mathrm{~m}^{-1}$
C $\quad 20 \mathrm{Vm}^{-1}$
D $\quad 30 \mathrm{Vm}^{-1}$

Q6.If the potential difference between a pair of identical, parallel, conducting plates is known, what is the only additional knowledge required to determine the electric field strength between the plates?

A the permittivity of the medium between the plates
B the separation and area of the plates
C the separation and area of the plates and the permittivity of the medium between the plates
D the separation of the plates
(Total 1 mark)

Q7. Which one of the following statements about electric field strength and electric potential is incorrect?

A Electric potential is a scalar quantity.
B Electric field strength is a vector quantity.
C Electric potential is zero whenever the electric field strength is zero.
D The potential gradient is proportional to the electric field strength.

Q8. Which one of the following statements about electric potential and electric field strength is correct?
A Electric potential is zero whenever the electric field strength is zero.
B Electric field strength is a scalar quantity.
C Electric potential is a vector quantity.
D Electric potential due to a point charge varies as $\frac{1}{r}$ where $r$ is the distance from the point charge.
(Total 1 mark)

Q9. $\mathbf{X}$ and $\mathbf{Y}$ are two points in an electric field a distance $d$ apart. The potential difference between $\mathbf{X}$ and $\mathbf{Y}$ is $V$. A particle carrying a charge $Q$ is accelerated by that field from $\mathbf{X}$ to $\mathbf{Y}$ in a time $t$. The gain in kinetic energy of the particle is

A $Q V$
B $\frac{1}{2} Q V^{2}$
C $\frac{Q V t}{d}$

D $Q V d$
(Total 1 mark)

Q10. Which one of the following arrangements of charge will produce zero electric field strength and zero electric potential at the point labelled $\mathbf{P}$ ?

(Total 1 mark)

Q11.An electric field is maintained in the region between two circular parallel metal plates, the separation of which is small compared with their diameter.
$\qquad$
not to scale

Y
Along the line $\mathbf{X}$ to $\mathbf{Y}$ between the plates
A the electric field strength decreases uniformly
B the electric field strength increases uniformly
C the electric field strength increases and then decreases again
D the electric field strength is the same everywhere
(Total 1 mark)

Q12. Four point charges $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and $\mathbf{Z}$ are each placed at a distance $\boldsymbol{a}$ from $\mathbf{O}$ as shown in the diagram. $\mathbf{X}$, $\mathbf{Y}$ and $\mathbf{Z}$ each have a charge $-Q$ and $\mathbf{W}$ has a charge $+Q$.


The resultant electric field strength at $\mathbf{O}$ is
A $\frac{Q}{\pi a^{2}}$ toward $\mathbf{Y}$
B $\frac{Q}{2 \pi z a^{2}}$ toward $\mathbf{Y}$
C $\frac{Q}{2 \pi a a^{2}}$ toward $\mathbf{W}$
D $\frac{Q}{4 \pi z a^{2}}$ toward $\mathbf{W}$

