M1. (a)	(i)	meter deflects then returns to zero ✓ current produces (magnetic) field / flux ✓ change in field / flux through Q induces emf ✓ induced emf causes current in Q (and meter) ✓
		Deflection to right (condone left) then zero is equivalent to 1st mark.
		Accept momentary deflection for 1 st point.
		"Change in field / flux <u>induces</u> current in Q" is just 🖌 from the last two marking points.

max 3

(ii) meter deflects in opposite direction (or to left, or ecf) ✓ field / flux through P is reduced ✓ induces emf / current in opposite direction ✓ Ignore references to magnitude of deflection.

2

(b) (i) flux linkage (=
$$n\Phi = nBA$$
) = 40 × 0.42 × 3.6 × 10⁻³
= 6.0(5) × 10⁻² ✓

Unit mark is independent. Allow 6×10^{-2} .

Wb turns ✓ Accept 60 mWb turns if this unit is made clear. Unit: allow Wb.

(ii) change in flux linkage = $\Delta(n\Phi)$ = 6.05 × 10⁻² (Wb turns) \checkmark induced emf $\left(=\frac{\Delta(n\phi)}{\Delta t}\right) = \frac{6.05 \times 10^{-2}}{0.50} = 0.12(1)$ (V) \checkmark

Essential to appreciate that 6.05×10^{-2} is change in flux linkage for 1st mark. Otherwise mark to max 1.

[9]

2

M2. (a)	emf = $\Delta(BAN) / t$ Change in flux = A × ΔB or 12 × (23 – 9) seen	
		C1
	Cubatitution imposing a success of 40	C1
	Substitution ignoring powers of 10	<i></i>
		C1
	1.2 V	
		A1
<i>4</i> \		
(b)	Reduced	
		MO
	Magnet will move (with the case)	
		A1
	Increased	
		MO
	Flux <u>linkage increases</u> or emf is proportional to <i>N</i>	
		A1
(c)	(i) Formula used	
	$\frac{411^{-} \times 8 \times 10^{-5}}{2.6}$ seen	
	3001	D 1
		ы
	0.348 / 0.349 seen to at least 3 st	
		B1
	(ii) Derived consistent at 0.25 a at $V = 0.V$	
	(ii) Period consistent at 0.35 S of $V_0 = \delta V$	- /
		B1
	Shape shows decreasing amplitude	
		M1

3

4

3

M3.(a) Induced current such as to opposes the change producing it \checkmark

Switch on current increases the flux through Y \checkmark

Current opposite direction / anticlockwise to create opposing flux ✓

Switch off flux thorough Y due to X decreases so current travels clockwise to create flux to oppose the decrease \checkmark

one marks for Lenz's law statement two for explaining what happens at switch on **OR** switch off adequately one for completing the argument for switch on and off adequately

(b) Determines correctly in the calculation two of $V_{\mu k}$ (5.6±1 µV), A (0.096 m²) and ω (9.4 rad s⁻¹) $\beta \checkmark$

Substitutes all three in $v = BAn\omega$ ignoring powers of 10 and calculation errors for A and / or ω provided they have been attempted with working shown \checkmark

B_H = 12.4 nT ✓ *Allow 2 or 3 sf*

M4.B

M5.C

[1]

[7]

M7. D				[1]
M8. B				[1]
M9. D				[1]
M10 .(a)	(i)	60 (degrees) ✓	1	
	(ii)	angle required is 150° ✓ which is 5 ^π / 6 [or 2.6(2)] (radians) ✓ <i>Correct answer in radians scores both marks.</i>	2	
(b)	(i)	(magnitude of the induced) emf ✓ Accept "induced voltage" or "rate of change of flux linkage", but not "voltage" alone.	1	

M6.D

(ii) frequency
$$\left(=\frac{1}{T}\right) = \frac{1}{40 \times 10^{-3}} \checkmark (= 25 \text{ Hz})$$

no of revolutions per minute = $25 \times 60 = 1500$ 1500 scores both marks. Award 1 mark for $40s \rightarrow 1.5$ rev min⁻¹.

-
-

angular speed
$$\omega \left(=\frac{2\pi}{T}\right) = \frac{2\pi}{40 \times 10^{-3}} \checkmark (= 157 \text{ rad s}^{-1})$$

peak emf (= *BANω*) = 0.55 × 157 = 86(.4) (V) ✓