M1.D

M2.B

M3.A

M4.(a) (i) determine area under the graph
[or determine area between line and time axis] \checkmark
(ii) as seen
line starts at very low current (within bottom half of first square) either line continuing as (almost) horizontal straight line to end $\checkmark \checkmark$
or very slight exponential decay curve \checkmark
which does not meet time axis
OR suitable verbal comment that shows appreciation of difficulty of representing this line on the scales involved
Use this scheme for answers which treat the information in the question literally.
as intended
line starts at half of original initial current
slower discharging exponential (ie. smaller initial gradient)
than the original curve \checkmark
correct line that intersects the original curve
(or meets it at the end)
Use this scheme for answers which assume that both
resistance values should be in Ω or $k \Omega$.
$1 / 2$ initial current to be marked within $\pm 2 \mathrm{~mm}$ of expected value.
(b) (i) energy stored $\left(=1 / 2 C V^{2}\right)=1 / 2 \times 0.12 \times 9.0^{2} \quad \checkmark \quad(=4.86(J))$ $4.86=3.5 \Delta h \quad \checkmark$ gives $\Delta h=(1.39)=1.4(\mathrm{~m}) \quad \checkmark$ to 2SF only

SF mark is independent.
Students who make a PE in the $1^{\text {st }}$ mark may still be awarded the remaining marks: treat as ECF.
(ii) energy is lost through heating of wires or heating the motor
(as capacitor discharges)
Allow heating of circuit or $I^{2} R$ heating.
energy is lost in overcoming frictional forces in the motor
(or in other rotating parts)
Location of energy loss (wires, or motor, etc) should be indicated in each correct answer.
[or any other well-expressed sensible reason that is valid e.g. capacitor will not drive motor when voltage becomes low

Don't allow losses due to sound, air resistance or resistance (rather than heating of) wires.
$\max 2$
[10]

M5.(a) (i) $7.5 \times 10^{-6}(\mathrm{C})$ or $7.5 \mu(\mathrm{C})$
(ii) Suitable scale and charge from (i) correctly plotted at 2.5 V

Large square $=1$ or $2 \mu C$ or
With false origin then large square $=0.5 \mu C$
B1
Only a Straight line drawn through or toward origin

Line must be straight, toward origin and only drawn between 2.5 V and $1.2 \mathrm{~V}(\pm 1 / 2$ square on plotted points)
(b) Attempted use of $E=1 / 2 C V^{2}$ Or attempted use of $E=1 / 2$ QV

C1

$$
\begin{aligned}
& 9.38(\mu \mathrm{~J})-2.16(\mu \mathrm{~J}) \text { seen } \\
& \text { or } \mathrm{E}=1 / 2 \times 3 \times 10^{-6} \times 2.5^{2}-1 / 2 \times 3 \times 10^{-6} \times 1.2^{2} \text { seen } \\
& \text { or } \mathrm{E}=1 / 2 \times 3 \times 10^{-6} \times\left(2.5^{2}-1.2^{2}\right) \text { seen } \\
& \text { or } E=1 / 2 \times 7.5 \times 10^{-6} \times 2.5-1 / 2 \times 3.6 \times 10^{-6} \times 1.2 \text { seen }
\end{aligned}
$$

$7.2 \times 10^{-6}(\mathrm{~J}) \quad$ c.a.o
(c) (i) Use of $V=V_{0} e^{-\frac{t}{R C}}$
or equivalent with

$$
Q=Q_{0} e^{-\frac{t}{R C}}
$$

$$
\left.\mathrm{R}=-\left(\frac{1.4 \times 10^{-3}}{\ln \left(\frac{12}{2.5}\right) \times 3 \times 10^{-8}}\right) \quad \text { or } \mathrm{R}=-\left(\frac{t}{\ln \left(\frac{V_{O}}{V}\right) \times C}\right)_{\text {or } \mathrm{R}=}^{\ln \left(\frac{V_{o}}{V}\right) \times C}\right)^{\mathrm{C} 1}
$$

C1
636 or $640(\Omega)$
(ii) Current decreases $(I=V / R) /$ describes rate of flow of electrons decreasing / rate of flow of charge decreases

Charge lost more slowly so pd falls more slowly because $\mathrm{V} \propto \mathrm{Q}$ or $\mathrm{Q}=\mathrm{CV}$ where C is constant

M6.(a) $\quad d=\frac{8.9 \times 10^{-12} \times 2.3 \times 250 \times 10^{-4}}{370 \times 10^{-12}}$,
$1.4 \times 10^{-3} \mathrm{~m}(1.4(1.38) \mathrm{mm}) \checkmark$
Data substitution - condone incorrect powers of 10 for C and A
(b) New capacitance $=161 \mathrm{pF} \checkmark$

New $V=0.13 \mathrm{nC} / 161 \mathrm{pF}=81 \mathrm{~V}$
(c) Energy stored $=1 / 2 \times 161 \times 10^{-12} \times 81^{2} \checkmark$
$0.53 \mu \mathrm{~J} \checkmark$

M8.B

M9.B

M10.B

M11.D

M12.C

M13. D

M14.
D

M15.
 D

M16. C

