M2.B

M3.A

[1]

[1]

M4.(a) (i) determine area under the graph [or determine area between line and time axis] ✓

1

(ii) as seen

line starts at very low current (within bottom half of first square) ✓
either line continuing as (almost) horizontal straight line to end ✓✓
or very slight exponential decay curve ✓
which does not meet time axis ✓

OR suitable verbal comment that shows appreciation of difficulty of representing this line on the scales involved ✓ ✓ ✓ Use this scheme for answers which treat the information in

Use this scheme for answers which treat the information the question literally.

3

as intended line starts at half of original initial current ✓ slower discharging exponential (ie. smaller initial gradient) than the original curve ✓ correct line that intersects the original curve (or meets it at the end) ✓ Use this scheme for answers which assume that both resistance values should be in Ω or $k\Omega$. 1/2 initial current to be marked within ±2mm of expected value.

(b) (i) energy stored (= $\frac{1}{2}$ CV²) = $\frac{1}{2} \times 0.12 \times 9.0^2$ \checkmark (= 4.86 (J)) 4.86 = 3.5 ∆h ✓ gives $\Delta h = (1.39) = 1.4$ (m) \checkmark to 2SF only ✓ SF mark is independent. Students who make a PE in the 1st mark may still be awarded the remaining marks: treat as ECF.

4

3

- (ii) energy is lost through heating of wires or heating the motor (as capacitor discharges) Allow heating of circuit **or** *I*² *R* heating. energy is lost in overcoming frictional forces in the motor (or in other rotating parts) \checkmark Location of energy loss (wires, or motor, etc) should be

indicated in each correct answer.

[or any other well-expressed sensible reason that is valid e.g. capacitor will not drive motor when voltage becomes low \checkmark] Don't allow losses due to sound, air resistance or resistance (rather than heating of) wires.

> max 2 [10]

(i) 7.5×10^{-6} (C) or 7.5 μ (C) **M5.**(a)

Β1

1

(ii) Suitable scale and charge from (i) correctly plotted at 2.5 V Large square = 1 or 2 μC or With false origin then large square = 0.5 μC

B1

Only a Straight line drawn through or toward origin

(b) Attempted use of
$$E = \frac{1}{2} CV^2$$
 Or attempted use of $E = \frac{1}{2} QV$
(1
9.38 (µJ) - 2.16 (µJ) seen
or $E = \frac{1}{2} \times 3 \times 10^{-6} \times 2.5^2 - \frac{1}{2} \times 3 \times 10^{-6} \times 1.2^2$ seen
or $E = \frac{1}{2} \times 3 \times 10^{-6} \times (2.5^2 - 1.2^2)$ seen
or $E = \frac{1}{2} \times 7.5 \times 10^{-6} \times 2.5 - \frac{1}{2} \times 3.6 \times 10^{-6} \times 1.2$ seen
(1
7.2 × 10⁻⁶ (J) c.a.o
(1
(c) (i) Use of $V = V_0 e^{-\frac{t}{RC}}$
or equivalent with
 $Q = Q_c e^{-\frac{t}{RC}}$
(1
(1)

Line must be straight, toward origin **and** only drawn between 2.5 V and 1.2 V (± 1 / 2 square on plotted

points)

$$R = - \left(\frac{1.4 \times 10^{-3}}{\ln\left(\frac{1.2}{2.5}\right) \times 3 \times 10^{-6}} \right) \text{ or } R = - \left(\frac{t}{\ln\left(\frac{V_o}{V}\right) \times C} \right) \text{ or } R = \left(\frac{t}{\ln\left(\frac{V_o}{V}\right) \times C} \right)$$

636 or 640 (Ω)

3

A1

C1

3

3

 Current decreases (I = V / R) / describes rate of flow of electrons decreasing / rate of flow of charge decreases

A1

Charge lost more slowly <u>so</u> pd falls more slowly <u>because</u> $V \propto Q$ or Q=CV where C is constant

MAX 2 [12]

2

2

M6.(a)
$$d = \frac{8.9 \times 10^{-12} \times 2.3 \times 250 \times 10^{-4}}{370 \times 10^{-12}} \checkmark$$

 $1.4 \times 10^{-3} \text{ m } (1.4 \ (1.38) \text{ mm}) \checkmark$
Data substitution – condone incorrect powers of 10 for C and
 $A \checkmark$
2

(b) New capacitance = $161 \text{ pF} \checkmark$

New V = 0.13 nC / 161pF = 81 V ✓

(c) Energy stored =
$$\frac{1}{2} \times 161 \times 10^{-12} \times 81^2$$

(d) Energy increases because:

In the polar dielectric molecules align in the field with positive charged end toward the negative plate (or WTTE). \checkmark

Work is done on the capacitor separating the positively charged surface of the dielectric from the negatively charged plate (or vice versa). \checkmark

[8]

2

M8 .B		[1]
M9 .B		[1]
M10. B		[1]
M11. D		[1]
M12 .C		[1]
M13.	D	[1]
M14.	D	[1]

M15. D

M16. C

[1]

[1]