M1. (a)	(i)	Appreciates <i>pV</i> should be constant for isothermal change (by working or statement) $W = p\Delta V$ is TO		
		Allow only products seen where are approximately 150 for 1 mark Penalise J as unit here		
			M1	
		Demonstrates pV = constant using 2 points (on the line) set equal to each other or conclusion made or shows that for V doubling that <i>p</i> halves (worth 2 marks)		
		need to see values for p and V		
		Accept statement that products are slightly different so not quite isothermal		
			A1	
		Demonstrates pV = constant using 3 points (on the line) with conclusion		
		Products should equal 150 to 2 sf		
		Accept statement that products are slightly different so not quite isothermal		
			A1	
	(ii)	Adiabatic <u>therefore</u> no heat transfer or Adiabatic <u>therefore</u> Q = 0		
			B1	
		Work is done <u>by</u> gas <u>therefore</u> <i>W</i> is <u>negative</u> or Work is done <u>by</u> gas <u>therefore</u> energy is removed from the system		
			B1	
		ΔU is negative <u>therefore</u> internal energy of gas decreases or energy is removed from the system <u>therefore</u> internal energy of gas decreases or work done by the gas <u>so</u> internal energy decreases		
		$-\Delta U = -W \text{ or } \Delta U = -W$		
			B1	

Uses pV/T = constant or uses pV=nRT or uses (iii) pV = NkTe.g. makes T subject or substitutes into an equation with p_A and V_A or p_c and V_c (condone use of n = 1) or $(pV)_{A}$ their $(pV)_c$ V_a read off range = 2.5 to 2.6 (× 10⁻⁴) $p_A = 600 \times 10^3$ V_c read off range = 8.5 to 8.6 (× 10⁻⁴) $p_c = 140 \times 10^3$ C1 Correct substitution of coordinates (inside range) into $(pV)_A$ (pV)_ With consistent use of powers of 10 $(pV)_{A}$ range is 150 to 156 and $(pV)_{C}$ range is 119 to 120.4 C1 1.2(5) Allow range from 1.2 to 1.3 Accept decimal fraction : 1 A1

3

Energy per large square = 10(J) or <u>states</u> that work done is equal to area under curve (between A and B) or energy per small square = 0.4(J)

or square counting seen on correct area

(b)

Must be clear that area represents energy either by subject of formula or use of units on 10 or 0.4

Alternative: W = area of a trapezium(with working) or $W = P_{mean} \times \Delta V$ or $W = 450 \times 10^3 \times 2.5 \times 10^{-4}$ or W = area of a rectangle + area of a triangle (with working)

			[14]
		A1	3
	= 0.061 × 10 ⁻³ or 6.06 × 10 ⁻⁵ (m ³)		
		C1	
	Condone E = 114 (J) or temperature = 291(K)		
	or $\left(\frac{v}{t}\right) = \frac{\Delta \theta}{\rho c \Delta \theta}$ and correct substitution seen		
	or allow V / t = $1.67 \times 10^{-3} \div 1100$		
		C1	
	or their energy \div (c ΔT) or their energy \div 68400		
	or number of cycles per s = 40 or (Mass per second =) 114 ÷ 68400 in rearranged form		
(c)	(Total energy removed per s =) 4560 (J)		
		B1	2
	States that actual work done would be lower because of curvature of line		
	Number of small squares = 263 to 287 seen and (W) = number of squares × area of one square (using numbers) Range = 105 to 115 (J)		
	number of squares × area of one square (using numbers) Range = 105 to 115 (J) Or		
	Number of large squares = 10.5 to 11.5 seen and (W) =		

M2.(a) (i) Clear statement that for isothermal pV =constant or $p_1V_1 = p_2V_2$ Applies this to any 2 points on the curve AB \checkmark e.g. $1.0 \times 10^5 \times 1.2 \times 10^{-3} = 4.8 \times 10^5 \times 0.25 \times 10^{-3} 120 = 120$ Allow pV = c applied to intermediate points **estimated** from graph e.g. $V = 0.39 \times 10^{-3}$, $p = 3 \times 10^5$

2

B1

(ii)
$$W = p \Delta v$$

= 4.8 × 10⁵ × (0.39 - 0.25) × 10⁻³
= 67 J \checkmark

(b)

	Q/J	W/J	∆U/J	
process $A \rightarrow B$	-188	-188	0	1
process $B \rightarrow C$	+235	(+)67	(+)168	~
process $C \rightarrow A$	0	+168	-168	1
whole cycle	+47	+47	0	1

Any horiz line correct up to max 3 Give CE in $B \rightarrow C$ if ans to ii used for W If no sign take as +ve

 $\eta_{overall} = 47 / 235 = 0.20 \text{ or } 20\%$ 🖌 (C)

(d) Isothermal process would require engine to run very slowly / be made of material of high heat conductivity 🖌 Adiabatic process has to occur very rapidly / require perfectly insulating container / has no heat transfer 🖌 Very difficult to meet both requirements in the same device \checkmark Very difficult to arrange for heating to stop exactly in the right place (C) so that at end of expansion the curve meets the isothermal at A 🖌

Page 5

Do not credit bald statement to effect adiabatic / isothermal process not possible - must give reason Ignore mention of valves opening / closing, rounded corners, friction, induction / exhaust strokes wtte

max 2

max 3

МЗ.

 (i) Indicated work per cylinder = area of loop ✓ [either stated explicitly or shown on the Figure e.g. by shading or ticking squares or subsequent correct working.]

appropriate method for finding area e.g. counting squares \checkmark correct scaling factor used [to give answer of 470 J ± 50 J] \checkmark indicated power = 4 × 0.5 × (4100/60) × 470 = 64 kW \checkmark

(ii) (Fuel flow rate = 0.376/100 = 0.00376 litre s⁻¹)

Input power (= c.v. × fuel flow rate)

= 38.6 × 10° × 0.00376 √

(= 145 kW)

 η_{overall} = brake power/input power \checkmark seen or implied from correct subsequent working

(b) Power expended in overcoming friction

in (all) the bearings / between piston & cylinder \checkmark and / or in circulating oil / cooling water \checkmark and / or driving auxiliaries (e.g. fuel injection pump) \checkmark

(c) Represents the induction <u>and</u> exhaust (strokes) (which take place at nearly atmospheric pressure). √

4

3

1

correct scaling factor (1) (to give answer \approx 500 kJ)

- (ii) P (= work done per kg x fuel flow rate)
 = 500 (kJ) × 9.9 (kgs¹) = 5000kW (1)
 (4950kW)
- (iii) (output power = indicated power friction power) $P_{out} = 4950 - 430 = 45(20) \, kW$ (1) (use of P = 5000 gives $P_{out} = 45(70)kW$) (allow C.E. for values of P in (ii))

(b) (i)
$$P_{in}$$
 (= fuel flow rate × calorific value)
= $0.30 \times 44 \times 10^{\circ} = 13(.2) \times 10^{\circ}W$ (1)

efficiency =
$$\frac{4520 \times 10^3}{13.2 \times 10^6} = 34\%$$

(allow C.E. for value of P_{out} in (a) (iii) and P_m in (b) (i))

j	2	

2

5

[7]

M5. (a) $T_{H} = 273 + 820 = 1093$ (K), $T_{c} = 273 + 77 = 350$ (K) (1)

efficiency =
$$\frac{T_H - T_C}{T_H} = \frac{1093 - 350}{1093} = 0.68 \text{ or } 68\%$$
 (1)

(b) rotational speed of output shaft = $\frac{1800}{2 \times 60}$ = 15 rev s⁻¹ (1) (work output each cycle = 380 J, 2 rev = 1 cycle in a 4 stroke engine) indicated power = 15 × 190 = 5.7 kW (1)

- (c) power lost (= indicated power –actual power) = 5.7 4.7 = 1.0 kW (1) (allow C.E. for incorrect value from (b))
- (d) energy supplied per sec (= fuel flow rate x calorific value)

$$= \frac{2.1 \times 10^{-2}}{60} \times 45 \times 10^{6} = 16 \ kW \ (15.8 \ kW) \ (1)$$

(e) efficiency = $\frac{\text{net power output}}{\text{power input}} = \frac{4.7}{16} = 0.29 \text{ or } 29 \%$ $\frac{4.7}{15.8} = 0.30 \text{ or } 30\%$

(allow C.E. for value from (d))

[7]

2

1

1