M2.(a) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave (i) / escape the (Earth's) gravitational field (with no further energy input) Not gravity Condone gravitational pull / attraction

(ii)
$$\frac{1}{2}mv^2 = \frac{GMm}{r}$$

Evidence of correct manipulation At least one other step before answer

Substitutes data and obtains $M = 7.33 \times 10^{22}$ (kg) (iii) or Volume = (1.33 × 3.14 × (1.74 × 10⁶)³ or 2.2 × 10¹⁹ $or \rho = \frac{3v^2}{8\pi Gr^2}$ C1 3300 (kg m⁻³)

A1

B1

B1

B1

(Not given all their KE at Earth's surface) energy continually (b) added in flight / continuous thrust provided / can use fuel (continuously)

1

2

2

	Less energy needed to achieve orbit than to escape from Earth's gravitational field / it is not leaving the gravitational field			
		B1	2	[7]
M3. C				[1]
M4. A				[1]
M5 .A				[1]
M6. C				[1]
M7. B				[1]
M8. (a)	zero potential at infinity (a long way away)			
	energy input needed to move to infinity (from the point)		B1	
	Page 3			

B1

work done by the field moving object from infinity potential energy falls as object moves from infinity

B1

C1

C1

A1

2

(b) Any pair of coordinates read correctly

$$E_{p \text{ or }} V = (-) \frac{GM}{r}$$

Rearrange for M

3

3

(c)	Reads correct potential at surface of Mars = -12.6 (MJ)	
	or reads radius of mars correctly $(3.5 \times 10^{\circ})$	C1
	equates to $\frac{1}{2} v^2$ (condone power of 10 in MJ)	
	use of v = $\sqrt{2GM/r}$ with wrong radius	C1
	5000 ± 20 m s ⁻¹ (condone 1sf e.g. 5 km s ⁻¹)	
	e.c.f. value of M from (b) may be outside range for other method 6.2 × 10 [⊸] x √their M	A1
(d)	Attempts 1 calculation of Vr	B1
	Many values give 4.2 so allow mark is for reading and using correct coordinates but allow minor differences in readings Ignore powers of 10 but consistent	

Two correct calculation of Vr

B1

		B1	3 [11]
M9.	D		[1]
M10.	В		[1]
M11.	D		[1]
M12.	 (a) work done per unit mass in bringing object from infinity to point B1 potential at infinity zero by definition B1 		
	work has been done by the field so potential at all points closer than infinity negative B1	3	

Three correct calculations with conclusion

(b) use of point on graph allow within \pm small square

substitution into $V = -\frac{GM}{r}$

range from
$$590 - 6.90 \times 10^{24}$$
 (kg)

(c) (i)
$$\Delta E_p = \frac{-\frac{GMm}{R_E + h} + \frac{GMm}{R_E}}{C1}$$

addition of radius of Earth to give 7.25 × 10° (m)
1.54 × 10° (J)

3

A1

C1

C1

A1

Β1

C1

C1

A1

3

(ii) equates
$$\frac{mv^2}{r}$$
 and $G\frac{mM}{r^2}$
to give $\Delta E_{\kappa} = G\frac{mM}{2}\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$

1.25 × 10° J

positive or increase

4

(iii)	(lower altitude so) gpe decreases ke increases			
		C1		
	loss of gpe is twice gain in ke			
		A1	2	
			2	[15]

[1]

M13. A

Page 7