## M1.C

M2.(a) (i) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave / escape the (Earth's) gravitational field (with no further energy input) Not gravity Condone gravitational pull / attraction
$\qquad$
(iii) Substitutes data and obtains $M=7.33 \times 10^{22}(\mathrm{~kg})$
or
Volume $=\left(1.33 \times 3.14 \times\left(1.74 \times 10^{6}\right)^{3}\right.$ or $2.2 \times 10^{19}$

$$
\text { or } \rho=\frac{3 v^{2}}{8 \pi G r^{2}}
$$

C1
$3300\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
A1
(b) (Not given all their KE at Earth's surface) energy continually added in flight / continuous thrust provided / can use fuel (continuously)

Less energy needed to achieve orbit than to escape from Earth's gravitational field / it is not leaving the gravitational field

M3.C

M4.A

M5.A

M6.C

M7.B

M8.(a) zero potential at infinity (a long way away)
work done by the field moving object from infinity potential energy falls as object moves from infinity

B1
(b) Any pair of coordinates read correctly

C1
$\pm 1 / 2$ square
Use of $E_{p \text { or }} V=(-) \frac{G M}{r}$
C1
Rearrange for $M$
$6.4( \pm 0.5) \times 10^{23} \mathrm{~kg}$
(c) Reads correct potential at surface of Mars $=-12.6(\mathrm{MJ})$

$$
\begin{aligned}
& \text { or reads radius of mars correctly }\left(3.5 \times 10^{\circ}\right) \\
& \text { equates to } \left.1 / 2 \mathrm{v}^{2} \text { (condone power of } 10 \text { in } \mathrm{MJ}\right) \\
& \text { use of } v=\sqrt{ }(2 \mathrm{GM} / \mathrm{r}) \text { with wrong radius } \\
& 5000 \pm 20 \mathrm{~m} \mathrm{~s}^{-1}\left(\text { condone } 1 \text { sf e.g. } 5 \mathrm{~km} \mathrm{~s}^{-1}\right) \\
& \begin{array}{l}
\text { e.c.f. value of } \mathrm{M} \text { from }(\text { (b) may be outside range for other } \\
\text { method } 6.2 \times 10^{-9} \mathrm{x} \sqrt{ } \text { their } M
\end{array}
\end{aligned}
$$

(d) Attempts 1 calculation of $V r$

Many values give 4.2.... so allow mark is for reading and using correct coordinates but allow minor differences in readings Ignore powers of 10 but consistent

Two correct calculation of $V r$

## Three correct calculations with conclusion


#### Abstract

M9. D

M10. B

M11. D


M12. (a) work done per unit mass in bringing object from infinity to point B1
potential at infinity zero by definition

B1
work has been done by the field so potential at all points closer than infinity negative
(b) use of point on graph allow within $\pm$ small square
substitution into $V=-\frac{G M}{r}$
C1
range from $590-6.90 \times 10^{24}(\mathrm{~kg})$
(c) (i) $\Delta \mathrm{E}_{\mathrm{p}}=-\frac{G M m}{R_{E}+h}+\frac{G M m}{R_{E}}$

C1
addition of radius of Earth to give $7.25 \times 10^{6}(\mathrm{~m})$
C1
$1.54 \times 10^{10}(\mathrm{~J})$
A1
(ii) equates $\frac{m v^{2}}{r}$ and $G \frac{m M}{r^{2}}$

C1
to give $\Delta \mathrm{E}_{\kappa}=G \frac{m M}{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
C1
$1.25 \times 10^{\circ} \mathrm{J}$
A1
positive or increase
B1
(iii) (lower altitude so) gpe decreases ke increases

> C1
loss of gpe is twice gain in ke

## A1

2
[15]

M13. A

