M1.(a) an object with an escape velocity greater than the speed of light Ignore references to singularity and density etc.
Allow gravity so strong light cannot escape.
(b) mass of black hole $=1 \times 10^{10} \times 1.99 \times 10^{30}=2 \times 10^{40} \mathrm{~kg} \checkmark$
M correct for the first mark
Use of
$R \quad=2 G M / c^{2}$
$=2 \times 6.67 \times 10^{-11} \times 2 \times 10^{40} /\left(3.00 \times 10^{8}\right)^{2}$
$=3 \times 10^{13} \mathrm{~m} \checkmark \quad$ allow 2.9 or 2.95 etc.
Final answer correct for the second mark.
Allow ce for the mass.
No sf penalty.
(c) $\quad V=\mathrm{Hd}$
$\mathrm{v}\left(\right.$ in $\left.\mathrm{kms}^{-1}\right)=6300$
$\mathrm{D}($ in MPc $)=3.3 \times 10^{8} / 3.26 \times 10^{6}$
$=101$ J
$\mathrm{H}=\mathrm{v} / \mathrm{d}=6300 / 101=62 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1} \quad \checkmark$
Alternatively.
Age of universe $=1 / \mathrm{H}$
= D / v
$=3.3 \times 10^{8} \times 9.47 \times 10^{15} / 16.3 \times 10^{6} \Omega$
$=5.0 \times 10^{17} \mathrm{~s}$
age of Universe $=1 / \mathrm{H}$

$$
=1 / 62
$$

$$
=1.6 \times 10^{-2} \mathrm{Mpc} \mathrm{~s} \mathrm{~km}^{-1}
$$

$$
=1.6 \times 10^{-2} \times 3.1 \times 10^{16} \times 10^{6} / 10^{3}
$$

$$
=5.0 \times 10^{17} \mathrm{~s}
$$

The first mark is for calculating D, the second for substituting correctly to find H
The third is for determining $1 / \mathrm{H}$ in seconds.
If other value of H used, 1 mark max.

M2.(a) Gives the ratio of the (recessional) velocity (of galaxies) to distance from Earth Accept equation with terms defined
not
v depends on d,
the relationship between them, shows the relationship between them
(b) $\quad d$ changed to $\operatorname{Mpc}\left(2.45 \times 10^{2}\right)$
or 1.8×10^{4} / their attempt to convert distance
Ord change to m and v to $\mathrm{m} \mathrm{s}^{-1}$
$(H=) 73.35$ or 73.47 seen to at least 3 sf
(c) (i) $T=1 / \mathrm{H}$ or $\mathrm{H}=2.4 \times 10^{-18} \mathrm{~s}$ seen
e.g. $3.08 \times 10^{-19} / 73$

C1
Value in s calculated $\left(4.2 \times 10^{17}\right)$
A1
Correct conversion to years 1.3×10^{10}
Allow their value in s
(ii) Universe is expanding at constant / steady rate

M3.(a) (i) Similarity both would appear the same brightness As the apparent magnitudes are the same Description and explanation needed for mark. Any references to same size gets zero for $1^{{ }^{\text {st }}}$ mark.

Difference Kocab would appear orange / red, Polaris yellow / white Due to their spectral classes / different temperatures Allow different colours + ref to spectral class for second mark If colour named, should be correct.
(b) (i) $\quad \mathrm{v}=\mathrm{Hd}$
$\mathrm{v}=0.025 \times 3 \times 10^{5}=7.5 \times 10^{3} \mathrm{~km} \mathrm{~s}^{-1} \checkmark$
$1^{\text {st }}$ mark is for calculating v
$\mathrm{d}=340 \times 10^{6} \mathrm{l} \mathrm{yr}=340 / 3.26 \mathrm{Mpc}=104 \mathrm{Mpc} \checkmark$
$2^{\text {nd }}$ mark is for working out d in Mpc
$\mathrm{H}=7.5 \times 10^{3} / 104=72 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1} \checkmark$
$3^{\text {d }}$ mark is for calculating H in the correct unit.
(ii) Age of Universe $=1 / \mathrm{H}$
$1^{\text {tt }}$ mark is for the equation
$=0.014 \times 10^{6} \times 3.26 \times 9.5 \times 10^{15} / 1000$
$2^{\text {nd }}$ is for the answer with working
$=4.3 \times 10^{17}$ seconds
(= 13.6 billion years)
Unit consistent with calculation.
$3^{d d}$ is for a time unit consistent with their answer / working

M4. (a) (i) increase in wavelength (of em radiation) due to relative recessive velocity between observer and source \checkmark
(ii) use of $v=\mathrm{Hd}$
to give $v=65 \times 25 v$
$=1.6 \times 10^{3}\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$
(b) (i) all type 1a supernovae have same peak absolute magnitude \checkmark
apparent magnitude can be measured \checkmark
ref to $\mathrm{m}-\mathrm{M} \log (\mathrm{d} / 10)$ or inverse square law $\boldsymbol{~}^{\prime}$
$\max 2$
(ii) use of $m-M=5 \log (d / 10)$
gives $12.9-(-19.3)=5 \log (\mathrm{~d} / 10)$
$\log (d / 10)=6.44$
$\mathrm{d}=27.5(\mathrm{Mpc})$
(c) to make the accepted value for the distance more reliable

M5. (a) (use of $\frac{\Delta \lambda}{\lambda}=-\frac{\nu}{c}$ gives) $\frac{(660.86-656.28)}{656.28}=(-) \frac{\nu}{3.0 \times 10^{8}}$
$v=(-) 2094 \mathrm{~km} \mathrm{~s}^{-1}(1)$
(b) graph to show:
correct plotting of points (1)
straight line through origin (1)
$H=\frac{\nu}{d}=$ gradient $=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}(1)$
(must show evidence of use of graph in calculation)

M6. (a) (i) $d=\frac{20 \times 10^{6}}{3.26}=15.3 \times 10^{6}(\mathrm{pc})$
(ii) (use of $v=H d$ gives) $v=65 \times 10^{-6}\left(\mathrm{~km} \mathrm{~s}^{-1} \mathrm{pc}^{-1}\right) \times 15.3 \times 10^{6}(1)$
$\approx\left(1000 \mathrm{~km} \mathrm{~s}^{-1}\right)$
(iii) (use of $\frac{\Delta \lambda}{\lambda}=-\frac{v}{c}$ gives) $\Delta \lambda=\frac{\frac{1000 \times 10^{3}}{3 \times 10^{8}}}{3} \times 656.3(\mathrm{~nm})=2.19(\mathrm{~nm})$
(allow C.E. for value of v from (ii)
$\lambda_{\text {gataxy }}=656.3+2.19=658.5 \mathrm{~nm} \quad$ (1)
(b) for the furthest point of the Universe, $d=\frac{C}{H}$
age of Universe $=\frac{d}{c}=\frac{1}{H}$
(1)
[or use of $v=H d$ and $t=\frac{d}{v}$ (1)
if all started from same point $t=$ age of Universe $=\frac{1}{H}$
(1)] assumption: that H remains constant

