M1.(a) The molecules (continually) move about in random motion \checkmark
Collisions of molecules with each other and with the walls are elastic \checkmark
Time in contact is small compared with time between collisions \checkmark
The molecules move in straight lines between collisions \checkmark

ANY TWO

Allow reference to 'particles interact according to Newtonian mechanics'
(b) Ideas of pressure $=\mathrm{F} / \mathrm{A}$ and $\mathrm{F}=$ rate of change of momentum \checkmark

Mean KE / rms speed / mean speed of air molecules increases \checkmark
More collisions with the inside surface of the football each second \checkmark
Allow reference to 'Greater change in momentum for each collision'
(c) Radius $=690 \mathrm{~mm} / 6.28)=110 \mathrm{~mm}$ or $T=290 \mathrm{~K} \checkmark$ seen
volume of air $=5.55 \times 10^{-3} \mathrm{~m}^{3} \checkmark$
$n \times 29(\mathrm{~g})=11.4(\mathrm{~g}) \checkmark n=0.392 \mathrm{~mol}$
$0.392 \times 8.31 \times 290$
Use of $p V=n R T=5.55 \times 10^{-3} \mathrm{~m}^{3}$
$p=1.70 \times 10^{5} \mathrm{~Pa}$
Conclusion: Appropriate comparison of their value for p with the requirement of the rule, ie whether their pressure above $1 \times 10^{5} \mathrm{~Pa}$ falls within the required band $\sqrt{ }$

Allow ecf for their $n V$ and $T \checkmark$

M3.(a) the number of atoms in 12 g of carbon-12
or the number of particles / atoms / molecules in one mole of substance not - N_{A} quoted as a number
(b) (i) mean kinetic energy $(=3 / 2 \mathrm{kT})=3 / 2 \times 1.38 \times 10^{-23} \times(273+22)$ $=6.1 \times 10^{-21}(\mathrm{~J}) \checkmark$ $6 \times 10^{-21} \mathrm{~J}$ is not given mark
(ii) mass of krypton atom

$$
=0.084 / 6.02 \times 10^{123}
$$

$$
\left(=1.4 \times 10^{-25} \mathrm{~kg}\right)
$$

$\overline{c^{2}}(=2 \times$ mean kinetic energy / mass
$\left.=2 \times 6.1 \times 10^{-21} / 1.4 \times 10^{-25}\right)$
$=8.7-8.8 \times 10^{4}$ J
$\mathrm{m}^{2} \mathrm{~s}^{-2}$ or $\mathrm{Jkg}^{-1} \checkmark$
${ }^{\text {st }}$ mark is for the substitution which will normally be seen within a larger calculation.
allow CE from (i)
working must be shown for a CE otherwise full marks can be given for correct answer only
no calculation marks if mass has a physics error i.e. no
division by N_{A} note for CE
answer $=(i) \times 1.43 \times 10^{25}$
(c) (at the same temperature) the mean kinetic energy is the same or
gases have equal $\frac{1}{2} m c_{r m s}^{2}$
or
 $\overline{c^{2}}$ or mean square speed of krypton is less \checkmark

1st mark requires the word mean / average or equivalent in an algebraic term
$2^{\text {nd }}$ mark 'It' will be taken to mean krypton. So, 'It is less' can gain a mark
allow 'heavier' to mean more massive'
allow vague statements like speed is less for 2nd mark but not in the first mark

M4.(a) molecules have negligible volume collisions are elastic the gas cannot be liquified
there are no interactions between molecules (except during collisions)
the gas obeys the (ideal) gas law / obeys Boyles law etc.
at all temperatures/pressures
any two lines
a gas laws may be given as a formula
(iii) $\quad\left(V_{2}=P_{1} V_{1} T_{2} / P_{2} T_{1}\right)$
$V_{2}=1.6 \times 10^{6} \times .200 \times(273-50) / 3.6 \times 10^{4} \times(273+22)$ or $6.7(2)\left(m^{3}\right)$
allow ecf from bii
[reminder must see bii] look out for
mass remaining $=5.61 \times 0.20 / 6.72=0.17(\mathrm{~kg}) \checkmark(0.167 \mathrm{~kg})$
or
$n=\left(P V / R T=3.6 \times 10^{4} \times 0.200 /(8.31 \times(273-50))=3.88(5)(\mathrm{mol}) \checkmark\right.$
mass remaining $=3.885 \times 4.3 \times 10^{-2}=0.17(\mathrm{~kg}) \checkmark$
2 sig figs \checkmark
any 2 sf answer gets the mark

M5.
(a) (i) $n=P V / R T=3.2 \times 10^{5} \times 1.9 \times 10^{3 / 3} 8.31 \times 285$

$$
n=0.26 \mathrm{~mol} \quad \checkmark(0.257 \mathrm{~mol})
$$

(ii) $P_{2}=\frac{T_{2}}{T_{1}} \times P_{1}=\frac{295}{285} \times 3.20 \times 10^{5}$,
$3.31 \times 10^{5} \mathrm{~Pa} \quad \checkmark$ (allow $\left.3.30-3.35 \times 10^{5} \mathrm{~Pa}\right)$
3 sig figs \checkmark sig fig mark stands alone even with incorrect answer
(b) similar -(rapid) random motion

- range of speeds
different - mean kinetic energy
- root mean square speed
- frequency of collisions

