Q1.Figure 1 shows a circuit that includes an ideal operational amplifier. A student uses this circuit to amplify the signal from the sensor before further processing by the system.

Figure 1

(a) Point X in Figure 1 is said to be a virtual ear

Explain the meaning of the term virtual earth in this type of circuit.	
	(2)

(b) The temperature sensor produces a signal that changes by 10 mV for every degree Celsius change in temperature. The signal is 0 mV when the temperature of the sensor is 0 °C

The value of R_i is 22 k Ω and the value of R_f is 270 k Ω .

Calculate the output voltage V_{OUT} of the circuit in **Figure 1** when the sensor is at a temperature of 50 °C.

(c)	The circuit is powered by a -15 V - 0 - +15 V supply. Explain why this circuit will not detect temperatures above 122 $^{\circ}$ C.	
		(2
(d)	A student suggests a modification to the circuit in Figure 1 to form a difference amplifier circuit for a thermostat. The modified circuit is shown in Figure 2 .	
	Figure 2	
	temperature sensor V R_2 output 0 V	
	The output controls a circuit that switches the heater off when the output is positive.	
	Explain how this circuit operates so that the heater switches off when the temperature reaches a pre-determined level.	

Q2. The diagram below shows an op-amp used in an amplifier circuit.

(a)	Name the type of amplifier circuit shown.	(1)
(b)	Calculate the output voltage $V_{ ext{ iny out}}$ when the input voltage $V_{ ext{ iny in}}$ = 0.50 V.	

(2)

- (c) The input is now connected to a sinusoidal source of rms output 2.0 V and frequency 50 Hz.(i) Calculate the peak input voltage.
 - (ii) On the axes below draw a trace showing **two** cycles of the input signal and label it **A**.

On the same axes, draw the two corresponding cycles of the output signal and label it ${\bf B}$.

Add suitable scales to the axes.

(6) (Total 9 marks)