M1.(a) $\quad f_{0}=1 /(2 \pi \times \sqrt{ }(L \times C)) C=1 /\left(f_{0}^{2} \times 4 \pi^{2} \times L\right) \checkmark$ [valid rearrangement] $=1 /\left(50^{2} \times 4 \pi^{2} \times 0.1\right)$
$=5.07(5.1) \mu \mathrm{F} \quad[\mu \mathrm{F}]$
(b) \quad Q factor $=f_{0} / f_{B}=50 / 2.5=20 \checkmark$
(c) Resonant frequency becomes 25 Hz

Peak higher than original at resonant frequency $\checkmark \checkmark$
(b) (shown in (i) that at low $f, \frac{\frac{V_{\text {out }}}{V_{\text {in }}}}{}$ is low)
as f increases, X_{c} decreases and $V_{\text {out }}$ (across R) increases (1) until $\approx 0 \mathrm{~V}$ across X_{c} and $V_{\text {out }}=V_{\text {in }}(1)$

M3.(a) range of frequencies in signal \downarrow reference to frequency at which signal drops by e.g. power $3 \mathrm{~dB}(50 \%) /$ voltage $6 \mathrm{~dB}(71 \%) \downarrow$
(b) low pass / treble cut \downarrow
(c) (i) RC filter circuit, with input \& output labelled correct R \& C positions

(ii) substitute values into $\mathrm{f}=1 / 2 \pi \mathrm{RC} \downarrow$
rearrange for C \downarrow
40 (39.7) nF \downarrow
(d) (i) gain > 1 Ј
(ii) $100 \mathrm{~Hz} \checkmark$
(iii) gain $=0.2 \checkmark$ output $=0.4 \mathrm{~V} \checkmark$

M4.(a) Low pass filter \checkmark
(b)

(c) use of $1 / 2 \operatorname{RC} \checkmark=1 / 6.28 \times 10^{4} \times 10^{-8} \checkmark=1.6 \mathrm{kHz} \checkmark$
(d) not suitable \checkmark cuts off frequencies from too low a frequency \checkmark

