M1.(a) $f_o = 1 / (2\pi \times \sqrt{(L \times C)}) C = 1 / (f_o^2 \times 4\pi^2 \times L) \checkmark$ [valid rearrangement] = 1 / (50² × 4π² × 0.1) = 5.07 (5.1) µF ✓ [µF]

(b) Q factor = $f_o / f_B = 50 / 2.5 = 20$

(c) Resonant frequency becomes 25 Hz ✓

Peak higher than original at resonant frequency \checkmark

[5]

2

1

2

M2.(a) (i) (use of $X_c = \frac{1}{2\pi fC}$ gives) $f = \left(\frac{1}{2\pi x_c C}\right) = \frac{1}{2\pi 1000 \times (0.01 \times 10^{-6})} = 16 \times 10^4 \text{Hz} (1)$ (ii) $\left(X_c = \frac{1}{2\pi fC}\right)$ low f gives high X_c (1) $X_c >> \text{resistance } 1.0 \text{ k}\Omega$ (1) V_{out} (= IR) or $\frac{V_{\text{out}}}{V_{\text{in}}}$ is low (1) (or correct usage of potentiometer equation)

(b) (shown in (i) that at low
$$f$$
, $\frac{V_{out}}{V_{in}}$ is low)

as *f* increases, X_c decreases and V_{out} (across *R*) increases (1) until ≈ 0 V across X_c and $V_{out} = V_{in}$ (1)

[6]

2

4

M3. (a)	range of frequencies in signal ✓ reference to frequency at which signal drops by e.g. power 3dB (50%) / voltage 6dB (71%) ✓		
	(b)	low	pass / treble cut 🖌
	(c)	(i)	RC filter circuit, with input & output labelled ✓ correct R & C positions ✓

substitute values into f = 1 / $2\pi RC$ 🗸 (ii) rearrange for C ✓ 40 (39.7) nF 🖌

- (d) (i) gain > 1 🖌 1 100Hz 🖌 (ii) 1
 - (iii) gain = 0.2 ✓ output = 0.4V ✓ 2
 - [12]

1

2

1

2

3

M4.(a) Low pass filter 🗸

(c) use of $1/2RC \checkmark = 1/6.28 \times 10^4 \times 10^8 \checkmark = 1.6 \text{ kHz} \checkmark$

not suitable \checkmark cuts off frequencies from too low a frequency \checkmark

(d)

4

3

2

[10]