M1.(a) (i) electromagnetic / electrostatic / Coulomb (repulsion between the alpha particles and the nuclei) ✓

The interaction must be named not just described.

1

(ii) the scattering distribution remains the same (because the alpha particles interact with a nucleus) whose charge / proton number / atomic number remains the same or the (repulsive) force remains the same

The mark requires a described distribution <u>and the reason</u> for it.

Or

the scattering distribution changes / becomes less distinct because there is a mixture of nuclear masses (which gives a mixture of nuclear recoils) \checkmark

(owtte)

A reference must be made to mass and not density or size.

1

- (b) (i) use of graph to find r_0 e.g. $r_0 = 6.0 \times 10^{-15} / 75^{1/3} \checkmark$ (or $8.0 \times 10^{-15} / 175^{1/3}$) ($r_0 = 1.43 \times 10^{-15}$ m) Substitution and calculation t must be shown. Condone a gradient calculation on <u>R against A</u>^{1/3} graph (not graph in question) as $R \propto A^{1/3}$
 - 27

(ii) Escalate if clip shows 13 Al in the question giving R \approx 4 × 10⁻¹⁵ m.

(using $R = r_0 A^{\frac{1}{3}}$) $R = 1.43 \times 10^{-15} \times 51^{\frac{1}{3}} \checkmark$ $R = 5.3 \times 10^{-15} \text{ (m) } \checkmark$ $(R = 5.2 \times 10^{-15} \text{ m from})$ $r_0 = 1.4 \times 10^{-15} \text{ m})$ First mark for working. Second mark for evaluation which must be 2 or more sig figs allow CE from (i) $R = 3.71 \times (i)$. **Possible escalation**. 27

(c) Escalate if clip shows 13 in the question and / or the use of 27 in the working.

```
density = mass / volume
m = 51 \times 1.67 \times 10^{-27}
(= 8.5 \times 10^{-26} \text{ kg})
               Give the first mark for substitution of data into the top line or
              bottom line of the calculation of density.
v = 4/3\pi (5.3 \times 10^{-15})^3
(6.2(4) \times 10^{-43} \text{ m}^3)
               In the second alternative the mark for the substitution is only
              given if the working equation is given as well.
Or
density = A \times u / 4/3\pi (r_0 A^{1/3})^3
= u / 4 / 3\pi (r_0)^3
               51 \times 1.67 \times 10^{-27} would gain a mark on its own but 1.66 ×
               10^{-27} would need u / 4/3 \pi(r_0)^3 as well to gain the mark.
top line = 1.66 \times 10^{-27}
bottom line = 4/3\pi (1.43 \times 10^{-15})^3
✓ for one substitution
density = 1.4 \times 10^{17} \checkmark
(1.37 \times 10^{17})
kg m⁻³ ✓
               Expect a large spread of possible answers. For example
               If R = 5 \times 10^{-15} V = 5.24 × 10<sup>-43</sup> and density = 1.63 × 10<sup>17</sup>.
               Possible escalation.
```

M2.(a) (i) (Mass change in u=) 1.71×10^{-3} (u) or (mass Be-7) – (mass He-3) – (mass He-4) seen with numbers

C1

3

[8]

2.84 × 10⁻³⁰ (kg) **or** Converts their mass to kg *Alternative 2nd mark: Allow conversion of* 1.71 × 10⁻³ (*u*) to MeV by *multiplying by* 931 (=1.59 (MeV)) **seen**

	Substitution in E = mc^2 condone their mass <u>difference</u> in this sub but must have correct value for c^2 $(3 \times 10^8)^2$ or 9×10^{16}		
	Alternative 3rd mark: Allow their MeV converted to joules (× 1.6 × 10⁻¹³) seen		
		C1	
	2.55×10^{-13} (J) to 2.6 × 10^{-13} (J) Alternative 4th mark:		
	Allow 2.5 × 10^{-13} (J) for this method	A1	
		AI	4
(ii)	Use of $E=hc/\lambda$ ecf		
		C1	
	Correct substitution in rearranged equation with λ subject ecf		
		C1	
	7.65 × 10 ⁻¹³ (m) to 7.8 × 10 ⁻¹³ (m) ecf	• •	
		A1	3
(i)	Use of E _p formula:		
		C1	
	Correct charges for the nuclei <u>and</u> correct powers of 10	04	
	2.6(3) × 10⁻¹³ J	C1	
	2.0(0) *******	A1	
			3
(ii)	Uses K <i>E</i> = 3 / 2 <i>kT</i> : or halves KE _τ , KE= 1.3 × 10 ⁻¹³ (J) seen ecf		
		C1	

Correct substitution of data and makes T subject $\ ecf$ Or uses $KE_{\scriptscriptstyle T}$ value and divides T by 2

(b)

		6.35 × 10 ⁹ (K) or 6.4 × 10 ⁹ (K) or 6.28 × 10 ⁹ (K) or 6.3 × 10 ⁹ (K) ecf	A1	3
(c)	(i)	Deuteron / deuterium / hydrogen-2		
		Triton / tritium / hydrogen-3	B1	
			B1	2
	(ii)	Electrical heating / electrical discharge / inducing a current in plasma / use of e-m radiation / using radio waves (causing charged particles to resonate)	B1	¹ [16]

M3.D

M4.(a) the amount of energy required to separate a nucleus ✓ into its separate neutrons and protons / nucleons ✓ (or energy released on formation of a nucleus ✓ from its separate neutrons and protons / constituents ✓) 1st mark is for correct energy flow direction 2nd mark is for binding or separating nucleons (nucleus is in the question but a reference to an atom will lose the mark) ignore discussion of SNF etc both marks are independent

2

[1]

C1

(b) (i)
$$2_0^1 n \text{ or } 0^1 n + 0^1 n \checkmark$$

must see subscript and superscripts

2

1

3

(c) (i) line or band from origin, starting at 45° up to Z approximately = 20 reading Z = 80, $N = 110 \rightarrow 130$ \checkmark *initial gradient should be about 1 (ie Z = 20 ; N = 15 \rightarrow 25) and overall must show some concave curvature. (Ignore slight waviness in the line) if band is shown take middle as the line if line stops at N > 70 extrapolate line to N = 80 for marking*

1

(ii) fission fragments are (likely) to be above / to the left of the line of stability \checkmark

fission fragments are (likely) to have a larger N / Z ratio than stable nuclei

or

fission fragments are neutron rich owtte \checkmark and become neutron or β - emitters \checkmark

ignore any reference to α emission a candidate must make a choice for the first two marks stating that there are more neutrons than protons is not enough for a mark 1st mark reference to graph 2st mark – high N / Z ratio or neutron rich 3st mark beta <u>minus</u> note not just beta

[12]

3