M1.(a) Velocity and speed correct ✓ Distance and displacement correct ✓

	velocity	speed	distance	displacement
vector	1			√
scalar		1	✓	

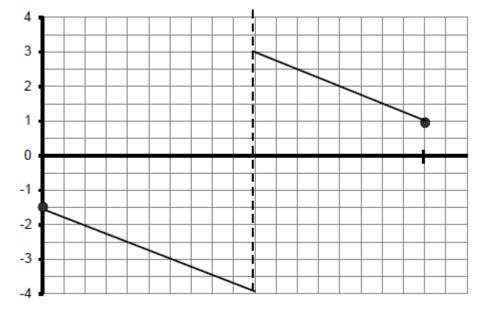
2

(b) (i)
$$v^2 = u^2 + 2as$$

 $v = \sqrt{u^2 + 2as}$ \checkmark $v = \sqrt{1.5^2 + 2 \times 9.81 \times 0.65}$

= (-)3.9 (m s⁻¹) \checkmark two or more sig fig needed (- 3.87337 m s⁻¹)

 1^{st} mark for equation rearranged to make v the subject (note sq' root may be implied by a later calculation) penalise the use of $g = 10 \text{ m } s^2$ only on this question


2nd mark for substituting numbers into any valid equation 3rd mark for answer

Alt' approach is gainKE = lossPE missing out u gives zero marks

answer only gains one mark [Note it is possible to achieve the correct answer by a wrong calculation]

3

Page 2

first line descends from X to the dotted line at t_A or up to one division sooner \checkmark (allow line to curve)

first line is straight and descends from X to v = -4 (m s⁻¹) \checkmark (allow tolerance one division)

second line has same gradient as the first, straight and descends to $v = 1 \text{ (m s}^{-1}) \checkmark \text{ (tolerance } \frac{1}{2} \text{ division)}$

a steep line may join the two straight lines but its width must be less than 2 divisions

(c)
$$s = ut + 1/2at^2$$

 $t = \sqrt{\frac{2s}{a}}$ OR correct substitution seen into either equation $t = \sqrt{\frac{2 \times 1.2}{9.81}}$

$$= 0.49 (s) \checkmark (0.4946 s)$$

working must be shown for the first mark but not the subsequent marks

$$v = s / t$$

= 5.0 / 0.49 = 10 (m s⁻¹) \checkmark (10.2 m s⁻¹) (allow CE from their time)
[note it is possible to achieve the correct answer by a wrong calculation]

[11]

3

M2.(a) (i)
$$(a = (v-u)/t)$$

= 27.8 (-0) / 4.6 = 6.04 \checkmark
= $\frac{6.0}{2}$ (ms⁻¹) \checkmark

no need to see working for the mark 2 sig fig mark stands alone

(ii)
$$(F = ma)$$

= $(360 + 82) \times 6.0(4) \checkmark$ (allow CE from (i))
= $2700 (N) \checkmark (2670 N \text{ or } 2652 N)$
 $F = 442 \times (i)$

1 mark may be gained if mass of rider is ignored giving answer 2200N from 2175N

2

2

air resistance / drag increases (with speed) 🗸 driving / forward force must be greater than resistive / drag force ✓ no mark for wind resistance (so that) resultant / net force stayed the same / otherwise the resultant / net force would decrease ✓ 4max3 (c) horizontal force arrows on both wheels towards the right starting where tyre meets road or on the axle labelled driving force or equivalent 🗸 ignore the actual lengths of any arrows ignore any arrows simply labelled 'friction' a horizontal arrow to the left starting anywhere on the vehicle labelled drag / air resistance no mark for wind resistance, resistance or friction force the base of an arrow is where the force is applied 2 (d) (F = P/v)= 22 000 / 55 ✓ Condone 22 / 55 for this mark $= 400 \checkmark (N)$ 2 [11] **M3**.(a) 11 (m) (i) В1 1 Use of $F = k\Delta L$ or W = mg(ii) Allow use of $\Delta L = 12 \text{ m}$ C1 3400 (N) Α1 2

(forward force would have to) increase ✓

(b)

(b)	Sets $mg = k\Delta L$		
		C1	
	1.9 (m)		
		A1	
			2
(c)	Correct use of $W = \frac{1}{2}k\Delta L^2$ or $\frac{1}{2}F\Delta L$		
	$\Delta L = 5 m$		
		C1	
	Correct use of $\triangle GPE = mg\Delta h$ $\Delta h = 25 m$		
		C1	
	States or uses $(mg\Delta h) - (\frac{1}{2} k\Delta L^2) = \frac{1}{2} mv^2$	0.	
	Claids of doos (mgan) (72 NAL) 72m	C1	
	$10 \ (m \ s^{-1}) \ ange$	O1	
	19 (m s ⁻¹) cnao	A 4	
		A1	4
(d)	Same kinetic energy when rope begins to stretch		
()		B1	
	More work done per unit extension / stops in shorter distance	ы	
	"Shorter time" gets no credit		
		B1	
	Increases force on jumper (increasing the risk of injury)		
		B1	
			3 [12]

Use of $KE = \frac{1}{2} m v^2$ (i) **M4**.(a) C1 21.7 (J) Α1 2 (ii) Use of W = FsAllow 1 mark for use of suvat or F=ma C1 0.70 (m) Α1 2 (b) Use of $\Delta E_p = mg\Delta h$ C1 Correct sub for h (1.7 sin 18°) C1 77.3 (W) OR Use of P=Fv Correct sub for *F* (*mg* sin 18°) or v (1.7 sin 18°) 77.3 (W) Α1 3 [7]