

A-Level Physics

Alpha, Beta and Gama

Mark Scheme

Time available: 71 minutes Marks available: 48 marks

www.accesstuition.com

Mark schemes

1.

- (a) finds d by reading position of (lower end of) detector;
 - subtracts 138 mm or wtte $_1\checkmark$

for $_{1}\checkmark$ allow 'reads / measures height of detector' / 'distance from detector to bench';

reject 'measures height of clamp T

if 'subtracts 138' is not seen; allow

'subtract distance from source to bench' / 'between source and bench' / 'height of source from ground' / 'position of top / open end / mouth of source';

allow 'measures height of the detector and the source and finds difference';

condone 'reversed' subtraction

annotates Figure 1 to show suitable use of a recognisable set-square $_2\checkmark$

for $_2\checkmark$ expect a <u>triangular</u> 90° set-square in contact with a vertical edge of the ruler, top edge aligned with open end of the detector, eq

condone use of recognisable T-square in contact with vertical edge etc

(b) background count rate correct $_1 \checkmark$

for $_{1}\sqrt{accept}$ any of:

background count rate = $0.7(0) / \frac{630}{900} (s^{-1})$

OR

background count in 100 s = 70OR background count in 300 s = 210

working leading to correct $Rc_2 \checkmark$

for
$$_2 \checkmark$$
 [cao] $\ge 2 \text{ sf } R_C = 0.33 \text{ (s}^{-1}\text{)}$

reject $R_C = 0.30$ if their uncorrected count has been rounded to 1.0

2

1

(c) attempts two calculations that would lead to a conclusion $\sqrt{1}$

for $_{1}\checkmark$ the result of at least one calculation of $d^{2} \times R_{C}$ or of $d \times \sqrt{R_{C}}$ must be correct to 2 sf (see table) otherwise withhold both marks; allow use of d in m but reject POT error; allow 1 sf $d^{2} \times R_{C}$ for use of $R_{C} = 0.3$; allow 530² × their (**b**) result

a reasoned judgement that the evidence does not support the prediction $_2 \checkmark$

d / mm	380	530	10/
<i>R</i> c / s ⁻¹	0.76	0.33	Δ%ο
$d^2 \times R_C$	1.1(0)×10 ⁵	9.27×10 ⁴	18%
$d \times \sqrt{R_{\rm C}}$	331 / 330	305 / 310	8.4%
d/mm	380	530	
<i>d /</i> mm <i>R</i> _C / s ⁻¹	380 0.76	530 0.3 (1 sf)	Δ%
d / mm $R_{\text{C}} / \text{s}^{-1}$ $d^2 \times R_{\text{C}}$	380 0.76 1.1(0)×10 ⁵	530 0.3 (1 sf) 8(.43)×10 ⁴	Δ% 29%

for $_2\checkmark$ two correct calculations of $_d{}^2\times R_{\rm C}$ or $_d\times \sqrt{R_{\rm C}}$, both must be correct to 2 sf

OR

one correct calculation of $d^2 \times R_C$ or of $d \times \sqrt{R_C}$ correct to 2 sf and an appropriate reverse-working calculation;

the statement rejecting the prediction should be supported by a calculation of the percentage difference between the results of their calculations (see Δ % in table);

condone weaker 'large' / 'significant differences' (between calculation results);

reject 'prediction not correct' because 'values are different' / 'not constant' / 'not close enough'

(d) lower / adjust the position of the detector / clamp $T_1 \checkmark$

for ${}_{1}\sqrt{}$ condone 'lower clamp' (this implies clamp **T** since **B** cannot be lowered further) allow 'remove source using tongs while adjusting detector / clamp **T** otherwise ${}_{2}X$

to maximise distance between the experimenter and the source or wtte

OR

to reduce (limit) exposure (time) of the experimenter to radiation or wtte $_2\checkmark$

for ${}_{2}\checkmark$ allow 'not going (too) close (to source)' reject 'don't touch / make contact with source' suggesting using lead shielding is neutral allow ${}_{12}\checkmark$ for 'remove source or wtte using tongs to maximise distance etc before moving **B** upwards' changes to the position of source / clamp **B** without the use of tongs loses both marks

1

1

(e) determines $10^a - 10^b$ where a and b are (any) plotted values of log (d / mm) $\sqrt{14}$

use of $\Delta d = \frac{10^{a} - 10^{b}}{n}$ where *n* is 1, 2, 3 or 4;

 Δd in range 47(.0) to 53(.0) (mm) $_2\checkmark$

insist on a and $b \ge 2$ dp; allow read-off errors \pm one square; expect $\frac{10^{2.52} - 10^{2.11}}{4} = 50(.6)$ (mm); allow $_{12}\sqrt{10} e^{\frac{e^a}{n} - e^b}$ leading to Δd correct for their values

 $_{2}\sqrt{}$ is contingent on $_{1}\sqrt{}$ ie there is no credit for an unsupported answer

for $1 \checkmark \log R_c = -2 \log d + \log k$ seen; minus sign essential

appropriate use of Figure 2 ₂√

for $_{2}\checkmark$ draw best-fit line **and** measure gradient; allow implication that a (linear) best-fit line is drawn and the gradient is being measured, eg 'check gradient of best-fit line'; condone m = gradient

processing and conclusion $_{3}\checkmark$

for ${}_{3}\checkmark$ states that the prediction is confirmed if the gradient / *m* is \approx -2 OR prediction is **not** confirmed if the gradient is \neq -2 condone 'the gradient should be -2 (to confirm prediction)'I (**no** ECF for *m* = (+)2 if denied in ${}_{1}\checkmark$ for missing - sign) allow ${}_{123}\checkmark$ prediction is **not** confirmed if the best-fit line is a curve reject 'prediction is confirmed if the best-fit line is straight' / 'there is a negative gradient' / 'because ' *k* is constant'

(g)
$$t_{\rm d} = 1.96 \times 10^{-4}$$
 (s) \checkmark

minimum 2 sf; accept 196 μ s; calculation should be $\frac{102 - 100}{102 \times 100}$ so only accept 2.0 × 10⁻⁴ (s) / 200 μ s only if **rounding up** ($\frac{100 - 98}{100 \times 98}$ gives $t_d = 2.04 \times 10^{-4}$ (s)) 1

1

1

(h) random nature of decay or wtte $\sqrt{1}$

> for $\sqrt{1}$ condone 'the source emits (photons) sporadically' / 'unpredictably'; reject explanation based on exponential decay reject 'decay occurs by chance' / 'source does not emit photons at a constant rate' / 'photons decay' / 'decay is spontaneous / inconsistent'

idea that more than one photon may arrive per 0.01 s interval

OR

idea that no photon may arrive during per 0.01 s interval

OR

photons 'arrive randomly' / 'do not arrive at a steady rate or wtte $_{2}$

 $_{2}\checkmark$ is contingent on $_{1}\checkmark$ (if no other answer given) allow $_{12}\checkmark$ for: 'only counts 50 since detector still 'dead' at 0.01 s so only 'sees' odd-numbered photons';

use of formula to show $R_1 = 50$ is neutral

2.

nuclear fallout / testing / weapons / nuclear accidents / Chernobyl / nuclear waste / nuclear (a) medicine / X-rays / specific uses of radioactive sources eg medical tracers CT scan etc. / cosmic rays as a result of air travel ✓ (Any source of radiation that an individual may encounter which would not have existed 100 years ago)

> No mark for general answers such as 'medical' or Nuclear Power / nuclear plant.

If a list is given all must be correct but ignore generalisations such as medical or nuclear power.

1

1

[16]

1

(b) $/_{15CCR} = 2050 - 40 = 2010 \checkmark$ (i)

Use of inverse square law eg $I_{CCR90} = I_{CCR15} \left(\frac{d_{15}}{d_{10}}\right)^2 \sqrt{(0.15 / 0.90)^2} = 55.8$

 $I_{90CR} = 55.8 + 40$

 $I_{90CR} = 96$ counts min⁻¹ \checkmark regardless of order: 1st mark subtraction of background in original data 2nd mark is for using inverse square function 3rd mark is for the answer

www.accesstuition.com

(ii) (reduce impact of) random error / decrease the (percentage) uncertainty / improve the statistics (because the percentage error is proportional to the inverse square-root of the count) ✓ (owtte)

The answer must be an uncertainty related statement and not increases reliability / accuracy or increased chance of a reading (although these ideas can accompany a correct answer) Ignore comparisons with the background count.

(iii) use (sensible) absorber between source and detector ✓ (sensible absorber means it must have a noticeable effect e.g. 1mm of metal / aluminium sheet / 5mm perspex but do not allow metal foil / paper sheets. Also its effect must not be so great that it reduces the gamma rays noticeably)

(These two marks are independent)

 β shown by count rate falling when sheet of aluminium absorber is used \checkmark Or (using the existing apparatus)

Compare the results (at various distances) in air with the expected inverse square law \checkmark

Below the range of beta law does not work but above range it does. \checkmark

2nd mark no mark given if count rate falls to zero as γ is still present (magnetic deflection is not common but if seen.

Use of magnetic deflection \checkmark correct deflection of beta from the beam \checkmark)

(If a cloud chamber is suggested. Observe the tracks in a cloud chamber \checkmark beta tracks have varying lengths or they are curly / not straight \checkmark

(The value of the range of beta is not a marking point so accept 15 – 80 cm if a number is given)

(a) A α particles 🗸

[auto mark question]

(b) (i)

3.

type of radiation	Typical range in air / m
α	0.04 🗸
β	0.40 🗸

Allow students to use their own distance units in the table α allow 0.03 \rightarrow 0.07 m β allow 0.20 \rightarrow 3.0 m. If a range is given in the table use the larger value. A specific number is required e.g. not just a few cm. 2

1

[7]

(ii) reference to the inverse square law of (γ radiation) or reference to lowering of the solid angle (subtended by the detector as it moves away) or radiation is spread out (over a larger surface area as the detector is moved away) 🗸 (owtte) Ignore any references to other types of radiation. Any contradiction loses the mark. For example, follows inverse square law so intensity falls exponentially. 1 (c) dust may be ingested / taken into the body / breathed in First mark for ingestion not just on the body causing (molecules in human tissue / cells) to be made cancerous / killed / damaged by ionisation 🗸 Second mark for idea of damage from ionisation 2 [6] (a) any 2 from: the sun, cosmic rays, radon (in atmosphere), nuclear fallout (from previous weapon testing), any radioactive leak (may be given by name of incident) nuclear waste, carbon-14 🗸 1 (b) (i) (ratio of area of detector to surface area of sphere) ratio = $\frac{0.0015}{4\pi(0.18)^2}$ \checkmark 0.0037 🗸 (0.00368) 2 (ii) activity = $0.62/(0.00368 \times 1/400)$ give first mark if either factor is used. 67000 V Bq accept s⁻¹ or decay/photons/disintegrations s⁻¹ but not counts s^{-1} (67400 Bq) 3 (use of the inverse square law) (C) $\frac{I_1}{I_2} = \left(\frac{r_2}{r_1}\right)^2$ or calculating k = 0.020 from I = k/x² \checkmark

$$I_2 = 0.62 \times \left(\frac{0.18}{0.28}\right)^2 \checkmark 0.26 \text{ counts s}^{-1} \checkmark \text{(allow 0.24-0.26)}$$

4.

www.accesstuition.com

[9]

- (a) (i) α (radiation) (1)
 - (ii) γ (radiation) (1)
- (b) (i) the radiation needs to pass through the body (to be detected) (1)
 - (ii) (otherwise) the activity of the source becomes too weak (during measurements) (1)
 - (iii) the decaying source may remain in the body for a long time and could cause damage (1) [or the activity of the source will be low unless a large quantity is used $(T_{1/2} \propto 1/\lambda)$]
- (c) corrected count rate at 0.2 m (= 2550 50) = 2500 (c min⁻¹) (1)
 corrected count rate at least distance (= 6000 50) = 5950 (c min⁻¹) (1)

use of
$$I = k \frac{I_0}{x^2}$$
 (or in the form $\frac{I_1}{I_2} = \left(\frac{x_2}{x_1}\right)^2$) (1)

(allow C.E. for using uncorrected count rate)

gives least distance =
$$0.20 \times \left(\frac{2500}{5950}\right)^{1/2}$$
 (1)

least distance = 0.13 m (1)

[1	0]

5

5.

2