

## **A-Level Physics**

Alpha, Beta and Gama

**Question Paper** 

Time available: 71 minutes Marks available: 48 marks

www.accesstuition.com



Figure 1



A sealed source that emits gamma radiation is held in a socket attached to clamp **B**. The vertical distance between the open end of the source and the bench is 138 mm. A radiation detector, positioned vertically above the source, is attached to clamp **T**.

A student is told **not** to move the stands closer together.

| Describe a procedure for the student to find the value of $d$ , the vertical distance between the open end of the source and the radiation detector. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| In your answer, annotate above the figure to show how a set-square can be used in this procedure.                                                    |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
| Before the source was brought into the room, a background count $C_{\rm b}$ was recorded. $C_{\rm b}$ = 630 counts in 15 minutes                     |
| With the source and detector in the positions shown in the figure above, $d$ = 530 mm. Separate counts $C_1$ , $C_2$ and $C_3$ are recorded.         |
| $C_1$ = 90 counts in 100 s<br>$C_2$ = 117 counts in 100 s<br>$C_3$ = 102 counts in 100 s                                                             |
| $R_{ m C}$ is the mean count rate corrected for background radiation.                                                                                |
| · ·                                                                                                                                                  |

| The apparatus is adjusted so that $d$ = 380 mm. Counts are made that show $R_{\rm C}$ = 0.76 s <sup>-1</sup> . |
|----------------------------------------------------------------------------------------------------------------|
| The student predicts that:                                                                                     |
| $R_{\rm C} = \frac{k}{d^2}$                                                                                    |
| where $k$ is a constant.                                                                                       |
| Explain whether the values of $R_{\rm C}$ in parts (b) and (c) support the student's prediction.               |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |

(c)

| (d) | Describe a safe procedure to reduce $d$ . Give a reason for your procedure. |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------|--|--|--|--|--|
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |
|     |                                                                             |  |  |  |  |  |

The student determines  $R_{\rm C}$  for further values of d.

The values of d change by the same amount  $\Delta d$  between each measurement. Figure 2 shows these data.

Figure 2



$$\Delta d$$
 = \_\_\_\_\_ mm

| Explain how the student could confirm whether the graph above supports the prediction $R_{\rm C} = \frac{k}{d^2}$ | on:        |
|-------------------------------------------------------------------------------------------------------------------|------------|
| No calculation is required.                                                                                       |            |
|                                                                                                                   |            |
|                                                                                                                   |            |
|                                                                                                                   |            |
|                                                                                                                   |            |
|                                                                                                                   |            |
| nen a gamma photon is detected by the detector, another photon cannot be detected for called the dead time.       | (3) a time |
| an be shown that:                                                                                                 |            |

It ca

(f)

$$t_{\rm d} = \frac{R_2 - R_1}{R_1 \times R_2}$$

where  $\,R_{\rm 1}$  is the measured count rate

 ${\it R}_{\rm 2}$  is the count rate when  ${\it R}_{\rm 1}$  is corrected for dead time error.

|    | (g) | The distance between the source and the detector is adjusted so that $d$ is very small and $R_1$ is 100 s <sup>-1</sup> .             |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------|
|    |     | On average, two of the gamma photons that enter the detector every second are not detected.                                           |
|    |     | Calculate $t_{\rm d}$ for this detector.                                                                                              |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     | $t_{\rm d} = \underline{\hspace{1cm}}$ \$                                                                                             |
|    | (h) | A student says that if 100 gamma photons enter a detector in one second and $t_{\rm d}$ is 0.01 s,                                    |
|    |     | all the photons should be detected.  Explain, with reference to the nature of radioactive decay, why this idea is <b>not</b> correct. |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
|    |     |                                                                                                                                       |
| 2. | (a) | The exposure of the general public to background radiation has changed substantially over                                             |
|    |     | the past 100 years.  State <b>one</b> source of radiation that has contributed to this change.                                        |
|    |     |                                                                                                                                       |
|    |     | (1)                                                                                                                                   |

(b) A student measures background radiation using a detector and determines that background radiation has a mean count-rate of 40 counts per minute. She then places a γ ray source 0.15 m from the detector as shown below.



With this separation the average count per minute was 2050.

The student then moves the detector further from the  $\gamma$  ray source and records the count-rate again.

(i) Calculate the average count-rate she would expect to record when the source is placed 0.90 m from the detector.

| count-rate = | min <sup>–1</sup> |     |
|--------------|-------------------|-----|
|              |                   | (3) |

(ii) The average count per minute of 2050 was determined from a measurement over a period of 5 minutes. Explain why the student might choose to record for longer than 5 minutes when the separation is 0.90 m.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

(1)

|          |     | (iii)    |                         | moved to 0.90 m the count-rate was lower than that It is suggested that the source may also emit $\boldsymbol{\beta}$ particle | es.                   |
|----------|-----|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|          |     |          | Explain how this can be | checked.                                                                                                                       |                       |
|          |     |          |                         |                                                                                                                                | -                     |
|          |     |          |                         |                                                                                                                                | -                     |
|          |     |          |                         |                                                                                                                                | _                     |
|          |     |          |                         |                                                                                                                                | _                     |
|          |     |          |                         |                                                                                                                                | _                     |
|          |     |          |                         |                                                                                                                                | -                     |
|          |     |          |                         |                                                                                                                                | -                     |
|          |     |          |                         |                                                                                                                                | _                     |
|          |     |          |                         | (                                                                                                                              | (2)<br>Total 7 marks) |
| 3.       | (a) |          |                         | uces the greatest number of ion pairs per mm in air? T                                                                         | ick (√)               |
| <u> </u> |     | the o    | correct answer.         |                                                                                                                                |                       |
|          |     | αμ       | particles               |                                                                                                                                |                       |
|          |     | βp       | particles               |                                                                                                                                |                       |
|          |     | γr       | ays                     |                                                                                                                                |                       |
|          |     | <u> </u> | rays                    |                                                                                                                                |                       |
|          |     |          | layo                    |                                                                                                                                | (1)                   |
|          | (b) | (i)      | Complete the table show | wing the typical maximum range in air for $lpha$ and $eta$ part                                                                |                       |
|          |     |          | Type of radiation       | on Typical range in air / m                                                                                                    |                       |
|          |     |          | α                       |                                                                                                                                |                       |
|          |     |          | β                       |                                                                                                                                |                       |
|          |     |          |                         |                                                                                                                                | (2)                   |
|          |     |          |                         |                                                                                                                                |                       |

www.accesstuition.com

|     | (ii) | $\gamma$ rays have a range of at least 1 km in air.                                                                                                                                                                                                                |                         |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|     |      | However, a $\gamma$ ray detector placed 0.5 m from a $\gamma$ ray source detects a noticeably smaller count-rate as it is moved a few centimetres further away from the source.                                                                                    |                         |
|     |      | Explain this observation.                                                                                                                                                                                                                                          |                         |
|     |      |                                                                                                                                                                                                                                                                    |                         |
|     |      |                                                                                                                                                                                                                                                                    |                         |
|     |      |                                                                                                                                                                                                                                                                    | (1)                     |
| (c) |      | owing an accident, a room is contaminated with dust containing americium which is ar<br>emitter.                                                                                                                                                                   | า                       |
|     | -    | plain the most hazardous aspect of the presence of this dust to an unprotected human ering the room.                                                                                                                                                               |                         |
|     |      | <del>_</del>                                                                                                                                                                                                                                                       |                         |
|     |      |                                                                                                                                                                                                                                                                    |                         |
|     |      |                                                                                                                                                                                                                                                                    |                         |
|     |      | (Total 6                                                                                                                                                                                                                                                           | (2 <u>)</u><br>6 marks) |
| (a) | corr | radioactivity experiment, background radiation is taken into account when taking rected count rate readings in a laboratory. One source of background radiation is the ks on which the laboratory is built. Give <b>two</b> other sources of background radiation. |                         |
|     | soui | rce 1                                                                                                                                                                                                                                                              |                         |
|     | sour | rce 2                                                                                                                                                                                                                                                              |                         |
|     |      |                                                                                                                                                                                                                                                                    | (1)                     |

4.

| (b) | A $\gamma$ ray detector with a cross-sectional area of 1.5 × 10 <sup>-3</sup> m <sup>2</sup> when facing the source is placed 0.18 m from the source.<br>A corrected count rate of 0.62 counts s <sup>-1</sup> is recorded. |                                                                                                                                                                                     |     |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|     | (i)                                                                                                                                                                                                                         | Assume the source emits $\gamma$ rays uniformly in all directions. Show that the ratio                                                                                              |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             | number of γ photons incident on detector number of γ photons produced by source                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             | is about $4 \times 10^{-3}$ .                                                                                                                                                       |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     | (2) |  |  |  |  |  |
|     | (ii)                                                                                                                                                                                                                        | The $\gamma$ ray detector detects 1 in 400 of the $\gamma$ photons incident on the facing surface of the detector. Calculate the activity of the source. State an appropriate unit. |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             | answer = unit                                                                                                                                                                       |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     | (3) |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                             |                                                                                                                                                                                     |     |  |  |  |  |  |

|    | (C) | soul  | rce.                                                                                                       |                     |
|----|-----|-------|------------------------------------------------------------------------------------------------------------|---------------------|
|    |     |       |                                                                                                            |                     |
|    |     |       | answer = counts s <sup>-1</sup>                                                                            | (0)                 |
|    |     |       | (Tot                                                                                                       | (3)<br>tal 9 marks) |
| 5. | (a) | Stat  | te which type of radiation, $\alpha$ , $\beta$ or $\gamma$ ,                                               |                     |
|    |     | (i)   | produces the greatest number of ion pairs per mm in air,                                                   |                     |
|    |     | (ii)  | could be used to test for cracks in metal pipes.                                                           |                     |
|    |     |       |                                                                                                            | (2)                 |
|    | (b) | -     | ecific radioisotope sources are chosen for tracing the passage of particular substantiough the human body. | ces                 |
|    |     | (i)   | Why is a $\gamma$ emitting source commonly used?                                                           |                     |
|    |     | (ii)  | State why the source should <b>not</b> have a very short half-life.                                        |                     |
|    |     | (iii) | State why the source should <b>not</b> have a very long half-life.                                         |                     |
|    |     |       |                                                                                                            |                     |

(c) A detector, placed 0.20 m from a sealed  $\gamma$  ray source, receives a mean count rate of 2550 counts per minute. The experimental arrangement is shown in the diagram below. The mean background radiation is measured as 50 counts per minute.



| Calculate the least distance between the source and the detector if the count rate is nexceed 6000 counts per minute. | ot to |
|-----------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |
|                                                                                                                       |       |

(5)

(Total 10 marks)