A-Level Physics

Analogue Signal Processing

Mark Scheme

Time available: 59 minutes Marks available: 57 marks

Mark schemes

1. (a) Numerical value for capacitor $=6.9 \mathrm{pF} \checkmark$

Substitution of values into formula alone - not sufficient for mark.
(b) $\quad \mathrm{Y}$ and X most suitable / (W and Z out of range) \checkmark
Y better than X as value falls within centre of range. \checkmark
implied choice - 1 mark
reason - 1 mark
(c) Evidence of reading at $0.7 \mathrm{~V}_{\max }(350 \mathrm{mV}) \checkmark$

Bandwidth $20 \mathrm{kHz} \checkmark$ Allow range (19-21 kHz)
1 mark only for:
Evidence of reading at $0.5 V_{\max }(250 \mathrm{mV})$
Bandwidth 25 kHz \checkmark Allow range ($24-26$ kHz)
(d) $\quad Q=f_{0} / f_{\mathrm{B}}=198 \mathrm{kHz} / 20 \mathrm{kHz}=9.9 \mathrm{~V}$

Allow ecf from (c)
(e) Either:

Listener hears overlapping stations - due to increase in bandwidth. \checkmark
Or
Listener hears station more faintly - due to energy loss / wider energy distribution \checkmark Accept S / N argument as weaker stations become more prominent and can be considered as noise.
2.
(a) $f=1 /(2 \pi \sqrt{ } \mathrm{LC})$
$C=1 / f^{2} 4 \pi^{2} L$
$C=1 /\left(910 \times 10^{3}\right)^{2} \times 4 \times \pi^{2} \times 1.1 \times 10^{-3}$
C $=27.8 \mathrm{pF}$ (accept 28 pF)
Formula with correct substitution / evidence of correct working Answer

General shape around f_{0} and to max of 1.0 on relative voltage gain axis

10 kHz bandwidth
at 0.71 gain

Frequencies (905-910-915) kHz (identified / used)
(c) Smaller Q factor leads to:
(Any two from)
(i) Broader bandwidth
(ii) More noise / (hiss) detected
(iii) Less selectivity
(iv) More susceptible to crosstalk from neighbouring stations on the frequency spectrum.
(v) Less gain due to energy loss / loss of signal detail
3. (a) (i) Log graph enables a wide range of values to be displayed on the same axis. Allow - (enables values to be displayed as straight line)
(ii) 7 lux
(b)

1 mark for connections correct way round
1
(c) (i) $60 \mathrm{k} \Omega /(60 \mathrm{k} \Omega+30 \mathrm{k} \Omega)) \times 12 \mathrm{~V}=8 \mathrm{~V}$

Working - 1
Answer - 1
(ii) $\quad R_{1}=11 \mathrm{k} \Omega$ to give same value at Y as switching voltage at X (2:1 ratio) (No ecf on value)

Reason / calculation - 1
Answer-1
(d) The op-amp is not ideal and will saturate above 0 V

Saturation - 1
Need to drop voltage
Voltage drop - 1
Acceptable method
Method - 1
4. (a) Feedback resistor from output to -ve input

Correct inverting or non-inverting amplifier circuit
For inverting, $4.7 \mathrm{k} \Omega$ and $470 \mathrm{k} \Omega$ in the correct place
For non-inverting, 4.7Ω input resistor AND two resistors in ratio of 99 / 100
(b) Formula

120 mV
0.12 V
(No unit error if obvious)
(c)

Positive gradient = no marks
Correct intercept on vertical axis
Correct intercept on horizontal axis
Straight line joining
(d) (No possible ecf from (c))

Calculation
10kHz
5. (a) use of $f=1 / 2 \pi \sqrt{ } L C$, change subject to $L=1 / 4 \pi^{2} f^{2} C$
substitute values, calculation, leading to $6.9 \mu \mathrm{H} \checkmark \checkmark \checkmark \checkmark$
(b) use of $\lambda=c / f$, substitute values leading to $22.1 \mathrm{~m} \checkmark$
dipole $=11.05 \mathrm{~m} \checkmark$
too large for desk operation \checkmark
4
(c) $13.56 / 0.1=136 \sqrt{ }$ (could be rounded down to 135)
(d) $1 \mathrm{~KB}=8192$ bits (allow 8000) $\sqrt{ }$
$8192 / 100000=0.082 \mathrm{~s}$
(or allow values based on 8000, 0.08s) regardless of these variations, time to download centres on $80 \mathrm{~ms} \sqrt{ }$
[10]
6. (a) Two input resistors to the inverting input $\sqrt{ }$, feedback resistor to the inverting input from the output \checkmark, non-inverting input to $0 \vee \checkmark$
(b) All resistors the same value \checkmark, $1 \mathrm{k} \Omega<\mathrm{R}<4 \mathrm{M} \Omega \checkmark$
(c) Two input resistors, one to each op-amp input \checkmark, feedback resistor to the inverting input from the output \checkmark, resistor from non-inverting input to $\mathrm{OV} \checkmark$
(d) All resistors the same value \checkmark, $1 \mathrm{k} \Omega<R<4 \mathrm{M} \Omega \checkmark$
(e) $(\mathrm{L}+\mathrm{R})+(\mathrm{L}-\mathrm{R})=2 \mathrm{~L}$, , $(L+R)-(L-R)=2 R \checkmark$
or equivalent by diagram or description

