

A-Level Physics

Basics of Electricity

Mark Scheme

Time available: 59 minutes Marks available: 49 marks

www.accesstuition.com

Mark schemes

1.

(a) Method 1:

Attempts to determine area under curve / by counting squares $_1 \checkmark$

Multiplies their (total) area (or charge) by 24 (V) 21

240 (J) ₃

Allow POT error on area of square in $\sqrt{14}$ and $\sqrt{24}$ Evidence seen by calculations **or** from counting squares **or** from division of area into **at least two** recognisable geometrical shapes (triangles, rectangles, trapezia) answer in range 220 J to 264 J

Method 2:

Attempt to determine average current (over first 200 ms in range 45 A to 55 A) 1

Use of $E = I \times V \times t_2 \checkmark$

240 (J) ₃

Substitutes current value (or \triangle current) with t = 200 ms and V = 24 V. Condone POT Allow as two stage Q=It and E=QV Or P = VI and E = Ptanswer in range 220 J to 264 J

(b) (KE (gained) =) 65(.0) (J) **or**

(PE (gained) =) 58(.3) (J) ₁√

Use of efficiency = $\frac{\text{an output energy}}{\text{ans from part 04.1}}$

Allow output energy = 65 /58/ 120 /123 or candidate ke + pe

or (total output = 65 + 58 =) 123 (J) $_2\checkmark$ Allow ecf from (a) for all 3 marks.

(Efficiency =) 0.51 or 51% $_{3}$ Answer to at least 2 sf. Range is 0.467 to 0.56 (46.7 % to 56 %)

3

3

(C) Heating occurs / temperature increases when there is a current (in the thermistor) (due to I^2R) $_1\checkmark$

(When the temperature increases) the resistance of thermistor decreases (whereas fixed resistor remains high) $_{2}\checkmark$

(Lower resistance from thermistor means) less wasted power $_{3}\checkmark$

OR

(Lower resistance from thermistor means) more pd dropped across the motor (less wasted voltage) $_{3}\checkmark$

> Alternatively: (Lower resistance from the thermistor means) less voltage drop across thermistor $_{3}\checkmark$

3

1

1

[9]

The current through a conductor between two points is directly proportional to the potential (a) 2. difference across the two points

> (provided the temperature remains constant) \checkmark Or ratio of voltage / current is constant

- (b) 75 (mA) 🗸
- (C) MAX 4

voltmeter position is incorrect because it is across the cell

voltmeter should be connected across the putty

the 10 Ω resistor is not suitable to control the current \checkmark

because its resistance is only half that of the putty \checkmark

pd range is 1.0 to 1.5 V, this is insufficient for experiment \checkmark

MAX 4

1

(d) Substitution of
$$V = A \times l$$
 into $\rho = \frac{R \times A}{l} \checkmark$

(leading to $\rho = \frac{RV}{l^2}$)

Complete argument needed

(e) $V = 60 \times 10^{-3} \times \pi \times (10 \times 10^{-3})^2$

 $(= 1.88 \times 10^{-5} \text{ m}^3) \checkmark$

$$\rho = 20 \times 1.88 \times 10^{-5} / (60 \times 10^{-3})^2$$

= 0.10 √Ωm √

3.

4.

Will not gain this mark only if POT error correctly followed through. Stand alone unit mark

		[10]
(a)	$I_3 = I_1 + I_2 \checkmark$	1
(b)	10 V √	1
(c)	I_2 = (12 – 10) / 10 \checkmark Allow ce for 10 V	1
	= 0.2 A \checkmark The first mark is for the pd	

The second is for the final answer

(d) pd across R_2 increases

As R_1 increases, pd across R_1 increases as pd = $I_1 R_1 \checkmark$	
First mark is for identifying that pd across R_1 increases (from zero).	

pd across $R_{\rm 3}$ = 10 V- pd across $R_{\rm 1}$

Therefore pd across R_3 decreases \checkmark Second mark is for identifying that pd across R_3 must decrease

pd across R_2 = 12 – pd across R_3

Therefore pd across R_2 increases \checkmark

Third mark is for identifying that this means pd across R2 must increase

(a) Correct substitution into P=VI 1.74 (A) [7]

3

1

1

1

1

2

	(b)	(i)	Correct substitution into R=V/I or V ² /P or P/I ² 264 (Ω)		
			Allow correct use of parallel resistor equation	2	
		(ii)	Use of $1/R_T = 1/R_1 + 1/R_2$ or $R = V^2/P$ 65 (66.1) (Ω)	2	
				2	
		(iii)	A = $\pi (1.5 \times 10^{-4})^2 / 4$ or $\pi (7.5 \times 10^{-5})^2$ or 1.767 × 10 ⁻⁸ (m ²)		
			Substitution into I=RA/ ρ with their area 4.2 (4.18) (m)		
			2 marks for 17 (m), using of d instead of r		
				3	
	(c)	Res	istivity / resistance increases with increasing temperature		
		(Lat	tice) ions vibrate with greater amplitude		
		redu	uced (for given pd)		
			ORA		
			Condone atoms for ions.		
			Accept "vibrate more".		
			Accept more frequent collisions occur between electrons and ions owtte	2	
				3	
	(d)	2.9	× 10 ⁻³ /447 or 2.9 × 10 ⁻³ /174 seen		
		6.5	$(6.49) \times 10^{-6}$ (m)		
		Cori	Condena use of 174 for T for C1 and R1 marks		
			Condone use of 174 for 1 for $C1$ and $B1$ marks		
			Allow 3 sig fig answer if 2.90 × 10 ° used	3	
				5	[15]
5.	(a)	emf chai OR	is the work done / energy transferred by a voltage source / battery / cell $\checkmark per unit ge \checkmark$		
		elec per OR	trical energy transferred / converted / delivered / produced \checkmark unit charge \checkmark		
		pd a	cross terminals when no current flowing / open circuit√√ not in battery		
			accept word equation OR symbol equation with symbols defined if done then must explain energy / work in equation for first mark		
				2	
	(b)	(i)	by altering the (variable) <u>resistor</u> √		
				1	

(ii) reference to correct internal resistance√ e.g. resistance of potato (cell) terminal pd = emf – pd across internal resistance / lost volts \checkmark pd / lost volts increases as current increases OR as (variable) resistance decreases greater proportion / share of emf across internal resistance√ accept voltage for pd 3 (iii) draws best fit straight line and attempts to use gradient \checkmark uses triangle with base at least 6 cm \checkmark value in range 2600 – 2800 (Ω) \checkmark 3 stand-alone last mark (C) total emf is above 1.6 V√ but will not work as current not high enough / less than 20 mA \checkmark 2 [11]