

Basics of Electricity

Mark Scheme

Time available: 59 minutes Marks available: 49 marks

Mark schemes

1. (a) Method 1:

Attempts to determine area under curve / by counting squares ${ }_{1} \checkmark$
Multiplies their (total) area (or charge) by $24(\mathrm{~V})_{2} \sqrt{ }$
$240(J)_{3} \sqrt{ }$
Allow POT error on area of square in ${ }_{1} \checkmark$ and ${ }_{2} \checkmark$
Evidence seen by calculations or from counting squares or from division of area into at least two recognisable geometrical shapes (triangles, rectangles, trapezia)
answer in range 220 J to 264 J

Method 2:

Attempt to determine average current (over first 200 ms in range 45 A to 55 A) $\sqrt{ }$ \checkmark
Use of $E=I \times V \times t_{2} \checkmark$
$240(J){ }_{3} \checkmark$
Substitutes current value (or Δ current) with $t=200 \mathrm{~ms}$ and $V=24$
V. Condone POT

Allow as two stage $Q=I t$ and $E=Q V$
$\operatorname{Or} P=V I$ and $E=P t$
answer in range 220 J to 264 J
(b) (KE (gained) $=) 65(.0)(\mathrm{J})$ or
(PE (gained) =) 58(.3) (J) ${ }_{1} \checkmark$
Use of efficiency $=\frac{\text { an output energy }}{\text { ans fom part 04. }}$
Allow output energy = $65 / 58 / 120 / 123$ or candidate $k e+p e$
or (total output $=65+58=)^{123(J)} \sqrt{ } \sqrt{ }$
Allow ecf from (a) for all 3 marks.
(Efficiency =) 0.51 or $51 \%{ }_{3} \checkmark$
Answer to at least 2 sf. Range is 0.467 to 0.56 (46.7% to 56 \%)
(c) Heating occurs / temperature increases when there is a current (in the thermistor) (due to $I^{2} R$) \downarrow
(When the temperature increases) the resistance of thermistor decreases (whereas fixed resistor remains high) $\sqrt{ } \sqrt{ }$
(Lower resistance from thermistor means) less wasted power ${ }_{3} \checkmark$
OR
(Lower resistance from thermistor means) more pd dropped across the motor (less wasted voltage) ${ }_{3} \checkmark$

Alternatively: (Lower resistance from the thermistor means) less voltage drop across thermistor ${ }_{3} \checkmark$
2. (a) The current through a conductor between two points is directly proportional to the potential
(provided the temperature remains constant) \checkmark
Or ratio of voltage / current is constant
(b) $75(\mathrm{~mA}) \checkmark$
(c) MAX 4
voltmeter position is incorrect because it is across the cell \checkmark
voltmeter should be connected across the putty \checkmark
the 10Ω resistor is not suitable to control the current \checkmark
because its resistance is only half that of the putty \checkmark
pd range is 1.0 to 1.5 V , this is insufficient for experiment \checkmark
MAX 4
(d) Substitution of $V=A \times l$ into $\rho=\frac{R \times A}{l} \checkmark$
(leading to $\rho=\frac{R V}{l^{2}}$)
Complete argument needed
(e) $\mathrm{V}=60 \times 10^{-3} \times \pi \times\left(10 \times 10^{-3}\right)^{2}$
$\left(=1.88 \times 10^{-5} \mathrm{~m}^{3}\right) \checkmark$
$\rho=20 \times 1.88 \times 10^{-5} /\left(60 \times 10^{-3}\right)^{2}$
$=0.10 \checkmark \Omega \mathrm{~m} \checkmark$
Will not gain this mark only if POT error correctly followed through.
Stand alone unit mark
[10]
3. (a) $I_{3}=I_{1}+I_{2} \checkmark$
(b) 10 V ,
(c) $\mathrm{I}_{2}=(12-10) / 10 \checkmark$

Allow ce for 10 V
$=0.2 \mathrm{~A} \checkmark$
The first mark is for the pd
The second is for the final answer
(d) pd across R_{2} increases

As R_{1} increases, pd across R_{1} increases as pd $=I_{1} R_{1} \checkmark$
First mark is for identifying that pd across R_{1} increases (from zero).
pd across $\mathrm{R}_{3}=10 \mathrm{~V}$ - pd across R_{1}
Therefore pd across R_{3} decreases \checkmark
Second mark is for identifying that pd across R_{3} must decrease
pd across $\mathrm{R}_{2}=12$ - pd across R_{3}
Therefore pd across R_{2} increases \checkmark
Third mark is for identifying that this means pd across R2 must increase
4. (a) Correct substitution into $\mathrm{P}=\mathrm{VI}$
1.74 (A)
(b) (i) Correct substitution into $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or $\mathrm{V}^{2} / \mathrm{P}$ or $\mathrm{P} / \mathrm{I}^{2}$ 264 (Ω)

Allow correct use of parallel resistor equation
(ii) Use of $1 / R_{T}=1 / R_{1}+1 / R_{2}$ or $R=V^{2} / P$ $65(66.1)(\Omega)$
(iii) $\quad \mathrm{A}=\pi\left(1.5 \times 10^{-4}\right)^{2} / 4$ or $\pi\left(7.5 \times 10^{-5}\right)^{2}$ or $1.767 \times 10^{-8}\left(\mathrm{~m}^{2}\right)$

Substitution into $\mathrm{I}=\mathrm{RA} / \rho$ with their area
4.2 (4.18) (m)

2 marks for 17 (m), using of d instead of r
(c) Resistivity / resistance increases with increasing temperature (Lattice) ions vibrate with greater amplitude Rate of movement of charge carriers / electrons (along wire) reduced (for given pd)

ORA
Condone atoms for ions.
Accept "vibrate more".
Accept more frequent collisions occur between electrons and ions owtte
(d) $2.9 \times 10^{-3} / 447$ or $2.9 \times 10^{-3} / 174$ seen
$6.5(6.49) \times 10^{-6}(\mathrm{~m})$
Correct answer given to 2 sig fig
Condone use of 174 for T for C1 and B1 marks
Allow 3 sig fig answer if 2.90×10^{-3} used
5. (a) emf is the work done / energy transferred by a voltage source / battery / cell $\sqrt{ }$ per unit charge $\sqrt{ }$
OR
electrical energy transferred / converted / delivered / produced \checkmark
per unit charge $\sqrt{ }$
OR
pd across terminals when no current flowing / open circuit $\checkmark \checkmark$
not in battery
accept word equation OR symbol equation with symbols defined if done then must explain energy / work in equation for first mark
(b) (i) by altering the (variable) resistor $\sqrt{ }$
(ii) reference to correct internal resistance $\sqrt{ }$
e.g. resistance of potato (cell)
terminal pd =emf -pd across internal resistance / lost volts $\sqrt{ }$
pd / lost volts increases as current increases OR as (variable)
resistance decreases greater proportion / share of emf across internal resistance $\sqrt{ }$
accept voltage for pd
(iii) draws best fit straight line and attempts to use gradient $\sqrt{ }$ uses triangle with base at least $6 \mathrm{~cm} \sqrt{ }$ value in range $2600-2800(\Omega) \sqrt{ }$
stand-alone last mark
(c) total emf is above $1.6 \mathrm{~V} \checkmark$
but will not work as current not high enough / less than $20 \mathrm{~mA} \sqrt{ }$

