

A-Level Physics

Bulk Properties of Solids

Mark Scheme

Time available: 84 minutes Marks available: 60 marks

www.accesstuition.com

Mark schemes

(a) Centripetal force acts inwards / towards the centre of rotation \checkmark

Links reaction force to centripetal force \checkmark

(b) Equates forces AND states either centripetal force with correct symbols √

 $F = m_A r \omega^2$ $F = m_B (L - r) \omega^2$ In MP1 condone: equations containing v; use of ω_A and ω_B for the angular velocities.

cancelling *ω*√

$$m_{\rm A} r \omega^2 = m_{\rm B} (L - r) \omega^2$$
$$r = \frac{m_{\rm B} L}{m_{\rm A} + m_{\rm B}}$$
E.g.

In MP2 it must be clear that the angular velocity and not the velocity.

(c) The angular speed is the same for A & B or

Rotational radius for B less than that for A \checkmark

Both of these points AND $v = r\omega$ so velocity of A is greater. *Alternative for MP2:* Both of points in MP1 AND A travels greater distance in the same time.

2

2

2

(d) Use of safety factor e.g. maximum stress << 0.300 GPa ✓

$$F = ma = 1.32 \times 10^6 \times 3.7 \checkmark (= 4.9 \times 10^6 \text{ N})$$

$$A = \frac{F}{\sigma}$$
 valid substitution \checkmark

$$\sqrt{\frac{44}{\pi}} \checkmark (\text{expect} > 0.144 \text{ m})$$

Valid justification for selection of maximum stress used e.g. using a stress that is from the linear / elastic section of the graph or reference to either safety factor or trying to limit weight of cable. \checkmark

Alternative for MP1: they can work through for a stress of 0.3 GPa and then increase the diameter, if justified as a safety factor. Do not allow use of stress ≈0.3 GPa for full marks. Allow ecf for stress and force

(a) Substitution of data in
$$Y = \frac{FL}{A\varepsilon}$$

3.1 × 10⁻³ (m) √

2 marks can be awarded if 4mm used to show T>500 N provided an explanation is provided, otherwise award zero.

2.

(c) Wind produces a wave / disturbance that travels along the wire \checkmark

Wave is reflected at each end / waves travel in opposite directions \checkmark

(Incident and reflected) waves interfere / superpose 🗸

Only certain frequencies since fixed ends have to be nodes. ✓

(d) Mass per m of the wire = 0.14(2) kg \checkmark

5

2

1

4

1

[11]

(e) Use of
$$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}} (= 2.47)$$
 to find fundamental

$$(\text{or } f = \frac{3}{2l}\sqrt{\frac{T}{\mu}})$$

Third harmonic = 7.4 (Hz) \checkmark The second mark is for multiplying the fundamental frequency by 3 allow ecf 2 (f) Diagram showing three approximately equally spaced loops Condone single line 1 Copper may be stretched beyond elastic limit / may deform (g) plastically Permenant deformation / Does not return to original length \checkmark Allow 'will remain longer than original' or 'will be permenantly deformed' 2 [13] EITHER

(a)

3.

calculate value for constant using two calculations \checkmark

calculate value for constant using three calculations and make a comment that they have same value \checkmark need to see table to look for any working

OR

calculate ratio between masses and \sqrt{T} for one pair of values \checkmark

calculate ratio between masses and \sqrt{T} for two pairs of values and make comment about same value 🗸

e.q. 0.5/0.8 = √110/√140

OR

work out constant and use to predict one other frequency or mass \checkmark

work out constant and use to predict two other frequencies or mass \checkmark

no comment needed with this alternative

(b) $\mu = \rho A = 1150 \times \pi (5.0 \times 10^{-4}/2)^2$

 $\mu = 2.258 \times 10^{-4} (\text{kg m}^{-1}) \checkmark$ use of consistent *m* and *f* Substituted in $f = \frac{1}{21}\sqrt{\frac{T}{\mu}}$ including g but condone powers of 10 error ✓ Award second mark if T and f substituted correctly (ignore μ) 0.67 m 🗸 If used diameter for radius incorrectly then lose first mark but can get third mark (answer 0.335 m) appreciation of reducing diameter when string is stretched. \checkmark (c) lower mass per unit length so (constant of proportionality and hence) frequency is higher (than would be predicted) \checkmark (a) P at the end of linear section \checkmark (b) Measure original length and diameter \checkmark Determine gradient of linear section to obtain F / extension √ $E = \frac{F}{e} \times \frac{\text{length}}{\pi \left(\frac{d}{2}\right)^2} \checkmark$ Alternative: Convert to stress-strain graph and determine gradient.

Line from A (c)

4.

Parallel to straight section of original

Ending at horizontal axis \checkmark

(d) Plastic deformation has produced permanent extension / re-alignment of bonds in material hence intercept non-zero √

Gradient is same because after extension identical forces between bonds √

3

2

1

1

1

1

1

1

1

[7]

(e) 0.2% is a strain of 0.002

5.

Stress = 2.0 x 10¹¹ x 0.002 =

		1
	4 x 10 ⁸ √	
	$Force\left(=\frac{\pi\left(6\times10^{-3}\right)^2}{4}\times4\times10^8\right)\checkmark$	1
	= 11.3 kN √	1
(f)	Maximum force = 11300 N	
	Weight of mass = 600 x 9.81 = 5886 N √	1
	Accelerating force must be less than	
	11300 – 5886 = 5423 N √	1
	a (= F / m = 5423 / 600)	
	= 9.0 m s ⁻² \checkmark	1
(g)	To lift double the load at the same acceleration, would require double the force, \checkmark The first mark is for discussing the effect on the force	1
	To produce the same strain either use:	
	• double the diameter of wire – so the stress stays the same and therefore the strain is the same for the same wire, \checkmark	
	• a wire with double the Young modulus – so that double the stress produces the same strain for the same diameter. \checkmark	1
	The other two are for discussing the two alternative methods of keeping the strain the same	1
		[16]
(a)	tensile stress is the force exerted per/over <u>cross sectional area</u>	1
	tensile strain is the extension per/over <u>original length</u> \checkmark	I
	NUT compared to	1

(b) material is brittle \checkmark

2nd mark dependent on first

		1
	shown on graph by little or no of plastic behaviour OR by linear behaviour/straight line to breaking stress ✔ OR	1
	material has high Young modulus OR material is stiff 🗸	
	shown on graph by large gradient/steep line (compared to other materials) \checkmark	
		1
(c)	area = $\pi \times (1.5 \times 10^{-4})^2 / 4 = 1.77 \times 10^{-8} \checkmark$	1
	tensile force = $1.77 \times 10^{-8} \checkmark$	-
	= 23 (N) ✓	1
	if use diameter as radius −1	1
	ii use incorrect formula ($d^2 2\pi t$ etc2)	
	range 22.5 – 24	
	power of ten error –1	
	if calculated area incorrectly get following answers	
	diameter as radius = 92 (2 marks)	
	$d^2 = 7.3 (1 mark)$	
	$2\pi r = 610\ 000\ (1\ mark)$	
	if use d for area then zero	
(d)	The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist marking this question.	
	Level 3 Correct materials selected for each application (B/C for lift and D for bungee). One reason for choices given for each application and explanation why at least one other material would be rejected for each application.	
	Correct materials selected for each application (B/C for lift and D for bungee). One reason for choices given for each application and explanation why at least one other material would be rejected for one application.	6
	The student presents relevant information coherently, employing structure, style and sp&g to render meaning clear. The text is legible.	5

Level 2 Correct material selected for one application (B/C for lift and D for bungee). One reason for choice given for one application and explanation why at least one other material would be rejected for one application.	
Correct material selected for one application (B/C for lift and D for bungee). One reason for choices given application.	4
Correct materials selected for each application (B/C for lift and D for bungee). One reason for choices given for each application	2
The student presents relevant information and in a way which assists the communication of meaning. The text is legible. Sp&g are sufficiently accurate not to obscure meaning.	3
Level 1 No correct material selected but at least two properties necessary for an application given.	
No correct material selected but at least one property necessary for an application given.	2
The student presents some relevant information in a simple form. The text is usually legible. Sp&g allow meaning to be derived although errors are sometimes obstructive.	1
Level 0 No correct material selected and no properties necessary for an application given The student's presentation, spelling and grammar seriously obstruct understanding.	0
The following statements may be present for cable supporting a lift material B/C is used for the lift because it has a high breaking stress and a high Young modulus material A not chosen because lower breaking stress material A not chosen because fails without warning material C not chosen because has a lower breaking stress material D not chosen as larger increase in strain for a given increase in stress	
material D not chosen as low breaking stress.	

material D a given stress produces a large strain meaning large extension

The following statements may be present for rope or cable used for bungee jump

material D chosen as due large strain for given stress time taken to come to rest lengthens

material D is chosen because D can store a large amount of energy before failure

not A ,B or C because high Young Modulus so sudden stop resulting in large forces

not A as brittle and therefore limited strain and sudden failure

not C because requires a large strain before plastic behaviour

not C because if behaves plastically will not return to original length