

A-Level Physics

Circular Motion

Mark Scheme

Time available: 53 minutes Marks available: 39 marks

www.accesstuition.com

Mark schemes (a) 1. (b) (c) (d) OR (e)

Use of time = angle / angular speed ✓

To get 3.5 s ✓

Arrow towards centre of turntable starting at the block. ✓

1

2

Use of $F = mrw^2 \checkmark$

To give 0.10 N ✓

2

Block constantly changing direction (at constant speed) ✓

Ref to N1 and therefore force must apply ✓

Changing direction shows (centripetal) acceleration ✓

Reference to N2 and therefore force must apply ✓

2

Use of pendulum equation ✓

To give 1.55 m ✓

2

(f) Amplitude – the pendulum shadow amplitude becomes less than the block shadow amplitude ✓

Phase – time period decreases/changes as pendulum amplitude gets less/closer to zero so shadow of bob will move ahead of block/phase changes ✓

> condone the two shadows remain in phase (as pendulum motion isochronous for small angles)

> > [11]

Centripetal force acts inwards / towards the centre of rotation 🗸 (a) 2.

Links reaction force to centripetal force ✓

2

2

(b) Equates forces AND states either centripetal force with correct symbols ✓

$$F = m_{\Delta} r \omega^2$$

$$F = m_B (L - r)\omega^2$$

In MP1 condone: equations containing v; use of ω_A and ω_B for the angular velocities.

cancelling *ω*√

$$m_{\text{A}}r\frac{1}{\omega^2} = m_{\text{B}}(L-r)\frac{1}{\omega^2}$$

$$r = \frac{m_{\mathsf{B}}L}{m_{\mathsf{A}} + m_{\mathsf{B}}}$$

E.g.

In MP2 it must be clear that the angular velocity and not the velocity.

(c) The angular speed is the same for A & B or

Rotational radius for B less than that for A 🗸

Both of these points AND $v = r\omega$ so velocity of A is greater.

Alternative for MP2:

Both of points in MP1 AND

A travels greater distance in the same time.

(d) Use of safety factor e.g. maximum stress << 0.300 GPa ✓

$$F = ma = 1.32 \times 10^6 \times 3.7 \checkmark (= 4.9 \times 10^6 \text{ N})$$

$$A = \frac{F}{\sigma}$$
 valid substitution \checkmark

$$\sqrt{\frac{44}{\pi}} \checkmark \text{ (expect > 0.144 m)}$$

Valid justification for selection of maximum stress used e.g. using a stress that is from the linear / elastic section of the graph or reference to either safety factor or trying to limit weight of cable. ✓

Alternative for MP1: they can work through for a stress of 0.3 GPa and then increase the diameter, if justified as a safety factor. Do not allow use of stress ≈0.3 GPa for full marks.

Allow ecf for stress and force

5

2

2

[11]

Radius of orbit = $5 \tan 28.5 + 1 = 3.71 \text{ m} \checkmark$ (a)

Speed =
$$2 \times 3.14 \times 3.71/5.2 = 4.49$$
 () \checkmark

For second mark only allow

Use of sin 28.5 gives orbit radius 3.39 m and speed = 4.1 m s⁻¹

Or

Forgets to add 1 giving radius 2.71 and speed 3.27 m s⁻¹

Centripetal force = $85 \times 4.49^2/3.71 = 460 \text{ N} \checkmark$ (b)

470 N if using 4.5 m s⁻¹ leads to 1000 N

Centripetal force = $T \sin 28.5 \checkmark$

Allow the following as ecf:

Forgetting to add the 1 m (using r = 2.71 m) leads to centripetal

force = 630 N T = 1300 N)

Using r = 3.39 m as ecf from part (e) which leads to

Centripetal force = 510 N giving T = 1070 N

 $T = 950 - 970 \text{ N} \checkmark$

OR

3.

Weight = 85 x 9.8(1) 0r 834 N seen ✓

Weight = $T \cos 28.5 \checkmark$

 $T = 950 (949) (N) \checkmark$

OR

Centripetal force = $85 \times 4.5^2/3.71 = 464 \text{ N} \checkmark$

Weight = 834 N ✓

$$T = \sqrt{464^2 + 834^2} = 950 - 970 \text{ N} \checkmark$$

Allow ecf for incorrect weight or centripetal force

Allow the following as ecf:

Forgetting to add the 1 m (using r = 2.71 m) leads to

Centripetal force = 630 N, T = 1050 N

Using r = 3.39 m leads to

Centripetal force = 510 N giving T = 980N

www.accesstuition.com

1

1

1

1

1

Page 5 of 7

(c) Vertical (compressive) force on the pole increases ✓

Increases mass $\underline{\text{increases weight}}$ and hence tension in the rope(for the same angle) $_1\checkmark$

Centripetal Force

on the acrobats/masses would be different/not equal

OR

Would be greater on the more massive acrobat(travelling at the same speed/same angle to vertical) ₁✓

Unbalanced (horizontal) forces/resultant force exists (on the pole) \checkmark

OR

Unbalanced moments acting (on pole)/resultant torque acting (on pole) ✓

Causing the pole to sway/bend/move/ or tilt/topple the platform toward more massive acrobat $_1\checkmark$

1 Max 3

1

2

1

1

. [8]

4. (a) magnetic field direction: -z (1)

(b) direction changes meaning that velocity is not constant (1)

acceleration involves change in velocity (or acceleration is rate of change of velocity) (1)

[alternatively

magnetic force on electron acts perpendicular to its velocity (1) force changes direction of movement causing acceleration (1)]

(c) (i) $BQv = \frac{mv^2}{r}$ (1) gives $v = \frac{BQr}{m}$

$$=\frac{0.43\times10^{-3}\times1.60\times10^{-19}\times74\times10^{-3}}{9.11\times10^{-31}}$$
 (1) (= 5.59 × 10⁶ m s⁻¹)

(ii) angular speed $\omega \left(= \frac{v}{r} \right) = \frac{5.59 \times 10^6}{74 \times 10^{-3}} = 7.5(5) \times 10^7 \text{ (1)}$

unit: $rad s^{-1}$ (1) (accept s^{-1})

2

2

(iii) frequency of electron's orbit
$$f\left(=\frac{\omega}{2\pi}\right) = \frac{7.55 \times 10^7}{2\pi}$$
 (1)
 (= 1.20 × 10⁷ s⁻¹)

number of transits min⁻¹ = $1.20 \times 10^7 \times 60 = 7.2 \times 10^8$ (1)

[alternatively

orbital period
$$\left(= \frac{2\pi r}{v} \right) = \frac{2\pi \times 74 \times 10^{-3}}{5.59 \times 10^6} \text{ [or } \left(= \frac{2\pi}{\omega} \right) = \frac{2\pi}{7.55 \times 10^{-7}} \text{]}$$

$$(= 8.32 \times 10^{-8} \text{ s})$$

number of transits min⁻¹ =
$$\frac{60}{8.32 \times 10^{-8}} = 7.2 \times 10^{8}$$
 (1)]

[9]

2