

Circular Motion

Mark Scheme

Time available: 53 minutes Marks available: 39 marks

Mark schemes

1. (a) Use of time = angle / angular speed \checkmark

To get $3.5 \mathrm{~s} \checkmark$
(b) Arrow towards centre of turntable starting at the block. \checkmark
(c) Use of $F=m r w^{2} \checkmark$

To give $0.10 \mathrm{~N} \checkmark$
(d) Block constantly changing direction (at constant speed) \checkmark

Ref to N1 and therefore force must apply \checkmark
OR
Changing direction shows (centripetal) acceleration \checkmark

Reference to N 2 and therefore force must apply \checkmark
(e) Use of pendulum equation \checkmark

To give 1.55 m V
(f) Amplitude - the pendulum shadow amplitude becomes less than the block shadow amplitude \checkmark

Phase - time period decreases/changes as pendulum amplitude gets less/closer to zero so shadow of bob will move ahead of block/phase changes \checkmark condone the two shadows remain in phase (as pendulum motion isochronous for small angles)
2. (a) Centripetal force acts inwards / towards the centre of rotation \checkmark

Links reaction force to centripetal force \checkmark
(b) Equates forces AND states either centripetal force with correct symbols $\sqrt{ }$

$$
\begin{aligned}
& F=m_{A} r \omega^{2} \\
& F=m_{B}(L-r) \omega^{2}
\end{aligned}
$$

In MP1 condone: equations containing v; use of ω_{A} and ω_{B} for the angular velocities.
cancelling $\omega \checkmark$

$$
\begin{aligned}
& m_{\mathrm{A}} r \omega^{\frac{2}{2}}=-m_{\mathrm{B}}(L-r) \omega^{\frac{2}{2}} \\
& r=\frac{m_{\mathrm{B}} L}{m_{\mathrm{A}}+m_{\mathrm{B}}}
\end{aligned}
$$

E.g.

In MP2 it must be clear that the angular velocity and not the velocity.
(c) The angular speed is the same for A \& B or

Rotational radius for B less than that for A \checkmark
Both of these points AND $v=r \omega$ so velocity of A is greater. \checkmark
Alternative for MP2:
Both of points in MP1 AND
A travels greater distance in the same time.
(d) Use of safety factor e.g. maximum stress $\ll 0.300$ GPa \checkmark
$F=m a=1.32 \times 10^{6} \times 3.7 \checkmark\left(=4.9 \times 10^{6} \mathrm{~N}\right)$
$A=\frac{F}{\sigma}$ valid substitution \checkmark
$\sqrt{\frac{4 A}{\pi}} \checkmark($ expect $>0.144 \mathrm{~m})$
Valid justification for selection of maximum stress used e.g. using a stress that is from the linear / elastic section of the graph or reference to either safety factor or trying to limit weight of cable. \checkmark

Alternative for MP1: they can work through for a stress of 0.3 GPa and then increase the diameter, if justified as a safety factor. Do not allow use of stress $\approx 0.3 \mathrm{GPa}$ for full marks.
Allow ecf for stress and force
3. (a) Radius of orbit $=5 \tan 28.5+1=3.71 \mathrm{~m} \checkmark$

Speed $=2 \times 3.14 \times 3.71 / 5.2=4.49() \checkmark$
For second mark only allow
Use of $\sin 28.5$ gives orbit radius 3.39 m and speed $=4.1 \mathrm{~m} \mathrm{~s}^{-1}$
Or
Forgets to add 1 giving radius 2.71 and speed $3.27 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Centripetal force $=85 \times 4.49^{2} / 3.71=460 \mathrm{~N} \checkmark$

470 N if using $4.5 \mathrm{~m} \mathrm{~s}^{-1}$ leads to 1000 N

Centripetal force $=T \sin 28.5 \checkmark$

Allow the following as ecf:

Forgetting to add the 1 m (using $r=2.71 \mathrm{~m}$) leads to centripetal force $=630 \mathrm{~N} T=1300 \mathrm{~N}$)
Using $r=3.39 \mathrm{~m}$ as ecf from part (e) which leads to
Centripetal force $=510 \mathrm{~N}$ giving $T=1070 \mathrm{~N}$
$T=950-970 \mathrm{~N} \checkmark$

OR

Weight $=85 \times 9.8(1)$ Or 834 N seen \checkmark
Weight $=T \cos 28.5 \checkmark$
$T=950(949)(\mathrm{N}) \downarrow$
OR
Centripetal force $=85 \times 4.5^{2} / 3.71=464 \mathrm{~N} \checkmark$
Weight $=834 \mathrm{~N} \checkmark$
$T=\sqrt{464^{2}+834^{2}}=950-970 \mathrm{~N} \checkmark$
Allow ecf for incorrect weight or centripetal force

Allow the following as ecf:

Forgetting to add the 1 m (using $r=2.71 \mathrm{~m}$) leads to
Centripetal force $=630 \mathrm{~N}, T=1050 \mathrm{~N}$
Using $r=3.39 \mathrm{~m}$ leads to
Centripetal force $=510 \mathrm{~N}$ giving $T=980 \mathrm{~N}$
(c) Vertical (compressive) force on the pole increases \checkmark

Increases mass increases weight and hence tension in the rope(for the same angle) ${ }_{1} \checkmark$

Centripetal Force

on the acrobats/masses would be different/not equal

OR

Would be greater on the more massive acrobat(travelling at the same speed/same angle to vertical) ${ }_{1} \downarrow$

Unbalanced (horizontal) forces/resultant force exists (on the pole) \checkmark

OR

Unbalanced moments acting (on pole)/resultant torque acting (on pole) \checkmark
Causing the pole to sway/bend/move/ or tilt/topple the platform toward more massive acrobat ${ }_{1} \checkmark$
4. (a) magnetic field direction: $-z$ (1)
(b) direction changes meaning that velocity is not constant (1)
acceleration involves change in velocity
(or acceleration is rate of change of velocity) (1)

[alternatively

magnetic force on electron acts perpendicular to its velocity (1)
force changes direction of movement causing acceleration (1)]
1

2
(c) (i) $B Q v=\frac{m v^{2}}{r}(1)$ gives $v\left(=\frac{B Q r}{m}\right)$

$$
=\frac{0.43 \times 10^{-3} \times 1.60 \times 10^{-19} \times 74 \times 10^{-3}}{9.11 \times 10^{-31}}(1)\left(=5.59 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}\right)
$$

(ii) angular speed $\omega\left(=\frac{v}{r}\right)=\frac{5.59 \times 10^{6}}{74 \times 10^{-3}}=7.5(5) \times 10^{7}(1)$
unit. $\operatorname{rad~s}^{-1}(1)\left(\right.$ accept s $\left.^{-1}\right)$
(iii) frequency of electron's orbit $f\left(=\frac{a}{2 \pi}\right)=\frac{7.55 \times 10^{7}}{2 \pi}$ (1)
$\left(=1.20 \times 10^{7} \mathrm{~s}^{-1}\right)$
number of transits $\mathrm{min}^{-1}=1.20 \times 10^{7} \times 60=7.2 \times 10^{8}(1)$
[alternatively
orbital period $\left(=\frac{2 \pi}{v}\right)=\frac{2 \pi \times 74 \times 10^{-3}}{5.59 \times 10^{6}}\left[\operatorname{or}\left(=\frac{2 \pi}{\omega}\right)=\frac{2 \pi}{7.55 \times 10^{-7}}\right]$
$\left(=8.32 \times 10^{-8} \mathrm{~s}\right)$
number of transits $\left.\mathrm{min}^{-1}=\frac{60}{8.32 \times 10^{-8}}=7.2 \times 10^{8} \quad(1)\right]$

