

A-Level Physics

Classification of Ions

Question Paper

Time available: 70 minutes Marks available: 48 marks

www.accesstuition.com

U Cephei is an eclipsing binary system consisting of two stars that orbit their common centre of mass.

The primary star is class B; the secondary star is class G.

The figure below shows the variation of apparent magnitude of U Cephei with time as observed from Earth.

					_	
(a') Explain	the chan	a of tha	aranh in	the fiau	re shove
ıa		uic silab		ulabiliii	uic iluu	ie abuve.

(2)

A particular spectral line has a wavelength of 486.136 nm when measured from a source in the laboratory.

This line is also present in the absorption spectrum of the primary star of U Cephei. When observed from Earth, the wavelength of the primary star's absorption line varies as shown in the table below.

	Wavelength / nm
maximum value	486.498
minimum value	485.672

(c)	Show that the orbital speed of	the primary sta	ar is about 250 km s ⁻	-1.	
					4-1
(d)	Calculate the orbital radius of	the primary sta	ar.		(3)
			orbital radius =	m	
(e)	Which absorption lines would	be most promi	nent in the spectrum	of the primary star?	(2)
	Tick (✓) one box.				
	hydrogen				
	hydrogen and helium				
	ionised metals				
	neutral metals				

www.accesstuition.com

(1)

f)	A different eclipsing binary star system is thought to consist of a white dwarf star and neutron star.	a
	Discuss how astronomers could confirm this.	
		-
		-
		-
		-
		(2)
	(10	otal 11 marks)

3C 273 was the first quasar to be discovered.

IC 1101 is one of the largest galaxies known.

The table below shows some information about these objects.

	Absolute magnitude	Apparent magnitude	Distance / Mpc
quasar 3C 273	х	12.8	760
galaxy IC 1101	-22.8	14.7	320

(a) State the property of the quasar that led to its discovery.

(1)

(b) Show that the absolute magnitude \mathbf{X} of quasar 3C 273 is about -27

Explain which would be the bright		
Go on to calculate the ratio brighti	ness of brighter object ness of dimmer object	
	ratio =	
The black hole at the centre of IC where $M_{ m S}$ is the mass of the Sun.	1101 has a mass of $7.1 \times 10^{11} M_{ m S}$	
Calculate the average density with	hin the event horizon of the black ho	le.

The figure below shows the evolution of a star similar to the Sun on a Hertzsprung-Russell (HR) diagram.

(a) State the evolutionary stage of the star at each of the points W, X, Y and Z.

W	 	
x		
Y		
Z		

Theta Carinae is a star with a radius five times that of the Sun. It has a surface temperature of 31 000 K.

(b) Annotate the figure above with a **T** to show the position of Theta Carinae.

(1)

(3)

An astronomer suggests that an Earth-sized planet orbits Theta Carinae.

	er suggests that the Ear rinae as the Earth does		ves a similar amount of power
he average p	ower output of the Sun	is 3.8 × 10 ²⁶ W.	
Determine the	orbital radius of the Ear	th-sized planet orbit	ing Theta Carinae.

orbital radius =	m

(5)

(Total 11 marks)

The table summarises some information about four stars in the constellation Cassiopeia.

Name	Colour	Apparent magnitude	Distance / ly
Caph	white	2.3	55
Ruchbah	blue/white	2.7	99
Schedar	orange	2.2	228
Tsih	blue	2.2	610

(a) Which star has the highest surface temperature? Tick (\checkmark) one box.

Caph	
Ruchbah	
Schedar	
Tsih	

(1)

(b) The graph below shows the intensity received at Earth from two of the stars, plotted against wavelength.

The effect of absorption by the Earth's atmosphere is not shown.

ate which star in the table abov	e is dimmest on the absolute magnitude scale.	
ate which star in the table abov	e is dimmest on the absolute magnitude scale.	
ate which star in the table abov	e is dimmest on the absolute magnitude scale.	
ate which star in the table abov		

(c)

(d)

Calculate the radius of the event he Sun.	orizon for a black hole with a mass 15	times that of the
	radius =	m
		(Total 11 mark

(e)

Tsih has a mass over 15 times the mass of the Sun.

5.

Miaplacidus and Avior are two stars in the constellation Carina. Miaplacidus is a class A star.

Avior is a class K star.

The figure below shows how the intensity of radiation arriving at the Earth varies with wavelength for **one** of these stars. Only the important features of the variation are shown.

Deduce, with reference to the figure, the identity of the star.

In your answer you should:

- explain the overall shape of the graph
- describe the processes in the star that lead to the decreases in intensity

state the identity	of the star.		

(Total 6 marks)