

A-Level Physics

Cosmology

Mark Scheme

Time available: 67 minutes Marks available: 38 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Quasars are formed around black holes ✓₁

Black hole (at the centre of IC2497) no longer has matter falling into it \checkmark_2

MP2 – allow black hole no longer feeding; Black hole no longer active.

If no mention of black holes no marks can be awarded.

2

(b) use of z = v/c to give $v = zc = 0.0516 \times 3.00 \times 10^8 \checkmark_1$ Accept 2sf in final answer.

3

$$= 1.55 \times 10^7 \text{ m s}^{-1} = 1.55 \times 10^4 \text{ km s}^{-1}$$

use of v = Hd

to give
$$d = \frac{v}{H} \checkmark = \frac{1.55 \times 10^4}{65}$$

= 238 $\sqrt{_3}$ Mpc $\sqrt{_4}$

Condone Megaparsec, MPC or MPc but not Mps OR MpC.

Unit mark cannot be awarded without an attempt at calculation.

Allow correct converted unit.

(eg 782 \checkmark Mly \checkmark ; 4.93 \times 10¹⁰ AU; 7.40 \times 10²¹ m)

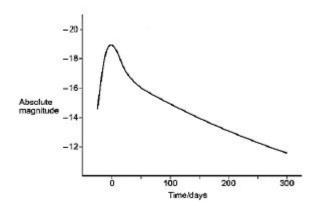
Units other than Mpc can only be awarded if there is a correct conversion – but allow ecf.

(eg AE in calculating Mpc correctly converted to m)

[6]

- 2.
- (a) It has a known absolute magnitude. ✓

Other wordings are possible. It must be clear that the candidate knows that it is the intrinsic power/brightness that must be known.


1

(b) Peak between −18 and −20 AND axis correct direction ✓
 Time scale 40 to 500 days ✓
 Lhs steeper than rhs (by eye) ✓

-ve sign essential

Allow magnitude and/or time axes starting at 0

Accept any unit for time which fits with the 40-500 days range. Ideal graph:

(c) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question

Mark	Criteria
6	All 3 areas covered with at least two aspects covered in some detail. 6 marks can be awarded even if there is an error and/or parts of one aspect missing.
5	A fair attempt to analyse all 3 areas. If there are several errors or missing parts then 5 marks should be awarded.
4	Two areas successfully discussed, or one discussed and two others covered partially. Whilst there will be gaps, there should only be an occasional error.
3	One area discussed and one discussed partially, or all three covered partially. There are likely to be several errors and omissions in the discussion.
2	Only one area discussed or makes a partial attempt at two areas.
1	None of the three areas covered without significant error.
0	No relevant analysis.

Examples of points which might be made in a good answer.

Data

- Also need *z* (or red shift).
- Use z value to find velocity (v = zc).
- Measure wavelength of spectral lines

2

Graph

- Plot graph of velocity on y-axis vs distance on x-axis.
- v in km/s, distance in Mpc.
- H is gradient of graph.

2

Limitations

3.

- Value of apparent magnitude may be affected by what the light passes through.
- Much variation in the data (there must be specific reasons given e.g. variations between galaxies or random errors in measurement).
- At large distances accelerating universe will affect graph.
- Need data from lots of supernovae

2

[10]

(a) Correct use of Doppler equation for both Galaxies ✓

Correct use of Hubbles law for both Galaxies ✓

Justified comparison leading to conclusion ✓

Award full credit for calculation:-

1. Hubble's constant for two galaxies and then related to Hubble's constant value in data booklet or to each other:

NGC 936 is consistent (H=69 km s⁻¹ Mpc⁻¹)

NGC 3379 is not consistent (H=92 km s⁻¹ Mpc⁻¹)

2.Using Hubble constant from data booklet to deduce if z or d in table are in agreement with calculated values for both galaxies.

3. Calculate ratio z/d for both galaxies and compare.

z/d = 4.8/6.8 = 0.7 and z/d = 3/3.2 = 0.9

Condone POT errors when compared in a ratio.

ECF for comparison if at least one calculation correct. (max2/3)

Candidate who calculates values for only one galaxy can only score 1 mark.

Credit discussion suggesting that other factors also affect galaxy velocity or distance measurements and difference not large so Hubble's Law is OK.

(b) Distant quasars are very faint; or Type 1a supernova (or standard candle) in associated galaxy would be very faint ✓

Reference to inverse square law ✓

or

Due to dark energy/accelerating universe, ✓

use of Hubble's Law/inverse square law not reliable over large distances. ✓

Condone 'barely detectable OWTTE' for faint.

Condone

Some quasars are situated behind intervening galaxies/gas clouds Affecting data/light received from quasar

2

[5]

The mark scheme gives some guidance as to what statements are expected to be seen in 1 or 2 mark (L1), or 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question.

Mark	Criteria	QoWC	
6	All three methods described. All three methods applied to Earth-like planets. Judgement reached.	The student presents relevant information coherently, employing structure, style and spg to render	
5	Only two methods described and all three applied, Or All three described and only two applied.	meaning clear. The text is legible.	
4	Two methods described and applied, Or three described and only one applied.	The student presents relevant information and in a way which assists the communication of	
3	Three methods described, Or Two methods described and one applied.	meaning. The text is legible. SPG are sufficiently accurate not to obscure meaning.	
2	Only one method described and applied Or two methods described with application.	The student presents some relevant information in a simple form. The text is usually legible. SPG allows meaning to be derived although errors are	
1	Only one method described.	sometimes obstructive.	
0	No relevant information.	The student's presentation, SPG seriously obstruct understanding.	

Higher Level (5 or 6 marks)

All three methods of measurement are described (transit, radial and direct observation)

www.accesstuition.com

Problems associated with each one are discussed, with particular reference to detecting an object an Earth-like planet.

Intermediate Level (3 or 4 marks)

Only two of the three methods are described and little effort is made to link the methods to the detection of an Earth-like planet.

Low level (1 or 2 marks)

Only one method is described, or two methods poorly.

Little or no reference is made to the detection of an Earth-like planet.

(a more detailed mark scheme will be produced with levelled statements)

Transit – dips in brightness as planet crosses in front of star from our point of view.

Alignment must be correct for planets to eclipse, so many possible candidates not observed. Earth-like planet could be observed provided not too far away.

Radial velocity (Doppler) – periodic shift in spectra of star due to star's movement around common centre of mass with planet.

Earth-like planet mass much less than mass of Sun-like star so effect slight. Earth-like planet could be detected with highly sensitive spectrometers.

Direct observation – very unlikely as Earth-like planet to small and too near star and too cool to be detected against the brightness of the Sun-like star. Unlikely to be detected.

[6]

(a) Apparent magnitude of star is measured over a long period of time ✓

When planet passes in front of star (as seen from Earth), some of the light from star is absorbed and therefore the amount of light reaching Earth reduced \checkmark

This produces a light curve showing constant value with a dip periodically as the planet passes in front of the star ✓

(b) Dip in light curve can be caused by other effects ✓

Except for planets very close to star, periods likely to be very long and may take many years of observation using transit method alone ✓

[5]

3

2

(a) Star much brighter than reflected light from planet \checkmark

Or

5.

6.

Planet very small and distant – subtends very small angle compared to resolution of telescopes

(b)	Planet and star orbit around common centre of mass that means the star moves towards/away from Earth as planet orbits √		
		1	
	Causes shift in wavelength of light received from star √	1	
(c)	Light curve showing constant value with dip ✓	1	
	When planet passes in front of star (as seen from Earth), some of the light from star is absorbed and therefore the amount of light reaching Earth reduced √		
		1	
	Apparent magnitude is a measure of the amount of light reaching Earth from the star		
		1	[6]
			r-1